Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristof De Schutter is active.

Publication


Featured researches published by Kristof De Schutter.


Nature Biotechnology | 2009

Genome sequence of the recombinant protein production host Pichia pastoris.

Kristof De Schutter; Yao-Cheng Lin; Petra Tiels; Annelies Van Hecke; Sascha Glinka; Jacqueline Weber-Lehmann; Pierre Rouzé; Yves Van de Peer; Nico Callewaert

The methylotrophic yeast Pichia pastoris is widely used for the production of proteins and as a model organism for studying peroxisomal biogenesis and methanol assimilation. P. pastoris strains capable of human-type N-glycosylation are now available, which increases the utility of this organism for biopharmaceutical production. Despite its biotechnological importance, relatively few genetic tools or engineered strains have been generated for P. pastoris. To facilitate progress in these areas, we present the 9.43 Mbp genomic sequence of the GS115 strain of P. pastoris. We also provide manually curated annotation for its 5,313 protein-coding genes.


The Plant Cell | 2007

Arabidopsis WEE1 Kinase Controls Cell Cycle Arrest in Response to Activation of the DNA Integrity Checkpoint

Kristof De Schutter; Jérôme Joubès; Toon Cools; Aurine Verkest; Florence Corellou; Elena Babiychuk; Els Van Der Schueren; Tom Beeckman; Sergei Kushnir; Dirk Inzé; Lieven De Veylder

Upon the incidence of DNA stress, the ataxia telangiectasia–mutated (ATM) and Rad3-related (ATR) signaling kinases activate a transient cell cycle arrest that allows cells to repair DNA before proceeding into mitosis. Although the ATM-ATR pathway is highly conserved over species, the mechanisms by which plant cells stop their cell cycle in response to the loss of genome integrity are unclear. We demonstrate that the cell cycle regulatory WEE1 kinase gene of Arabidopsis thaliana is transcriptionally activated upon the cessation of DNA replication or DNA damage in an ATR- or ATM-dependent manner, respectively. In accordance with a role for WEE1 in DNA stress signaling, WEE1-deficient plants showed no obvious cell division or endoreduplication phenotype when grown under nonstress conditions but were hypersensitive to agents that impair DNA replication. Induced WEE1 expression inhibited plant growth by arresting dividing cells in the G2-phase of the cell cycle. We conclude that the plant WEE1 gene is not rate-limiting for cycle progression under normal growth conditions but is a critical target of the ATR-ATM signaling cascades that inhibit the cell cycle upon activation of the DNA integrity checkpoints, coupling mitosis to DNA repair in cells that suffer DNA damage.


Applied Microbiology and Biotechnology | 2010

Engineering of glycosylation in yeast and other fungi: current state and perspectives

Karen Jacqueline Marcel De Pourcq; Kristof De Schutter; Nico Callewaert

With the increasing demand for recombinant proteins and glycoproteins, research on hosts for producing these proteins is focusing increasingly on more cost-effective expression systems. Yeasts and other fungi are promising alternatives because they provide easy and cheap systems that can perform eukaryotic post-translational modifications. Unfortunately, yeasts and other fungi modify their glycoproteins with heterogeneous high-mannose glycan structures, which is often detrimental to a therapeutic protein’s pharmacokinetic behavior and can reduce the efficiency of downstream processing. This problem can be solved by engineering the glycosylation pathways to produce homogeneous and, if so desired, human-like glycan structures. In this review, we provide an overview of the most significant recently reported approaches for engineering the glycosylation pathways in yeasts and fungi.


The Plant Cell | 2009

Control of Cell Proliferation, Organ Growth, and DNA Damage Response Operate Independently of Dephosphorylation of the Arabidopsis Cdk1 Homolog CDKA;1

Nico Dissmeyer; Annika K. Weimer; Stefan Pusch; Kristof De Schutter; Claire Lessa Alvim Kamei; Moritz K. Nowack; Bela Novak; Guilan Duan; Yong-Guan Zhu; Lieven De Veylder; Arp Schnittger

Entry into mitosis is universally controlled by cyclin-dependent kinases (CDKs). A key regulatory event in metazoans and fission yeast is CDK activation by the removal of inhibitory phosphate groups in the ATP binding pocket catalyzed by Cdc25 phosphatases. In contrast with other multicellular organisms, we show here that in the flowering plant Arabidopsis thaliana, cell cycle control does not depend on sudden changes in the phosphorylation pattern of the PSTAIRE-containing Cdk1 homolog CDKA;1. Consistently, we found that neither mutants in a previously identified CDC25 candidate gene nor plants in which it is overexpressed display cell cycle defects. Inhibitory phosphorylation of CDKs is also the key event in metazoans to arrest cell cycle progression upon DNA damage. However, we show here that the DNA damage checkpoint in Arabidopsis can also operate independently of the phosphorylation of CDKA;1. These observations reveal a surprising degree of divergence in the circuitry of highly conserved core cell cycle regulators in multicellular organisms. Based on biomathematical simulations, we propose a plant-specific model of how progression through the cell cycle could be wired in Arabidopsis.


Microbial Cell Factories | 2009

Open access to sequence: Browsing the Pichia pastoris genome

Diethard Mattanovich; Nico Callewaert; Pierre Rouzé; Yao-Cheng Lin; Alexandra Graf; Andreas Redl; Petra Tiels; Brigitte Gasser; Kristof De Schutter

The first genome sequences of the important yeast protein production host Pichia pastoris have been released into the public domain this spring. In order to provide the scientific community easy and versatile access to the sequence, two web-sites have been installed as a resource for genomic sequence, gene and protein information for P. pastoris: A GBrowse based genome browser was set up at http://www.pichiagenome.org and a genome portal with gene annotation and browsing functionality at http://bioinformatics.psb.ugent.be/webtools/bogas. Both websites are offering information on gene annotation and function, regulation and structure.In addition, a WiKi based platform allows all users to create additional information on genes, proteins, physiology and other items of P. pastoris research, so that the Pichia community can benefit from exchange of knowledge, data and materials.


Molecules | 2015

Protein-Carbohydrate Interactions as Part of Plant Defense and Animal Immunity

Kristof De Schutter; Els J. M. Van Damme

The immune system consists of a complex network of cells and molecules that interact with each other to initiate the host defense system. Many of these interactions involve specific carbohydrate structures and proteins that specifically recognize and bind them, in particular lectins. It is well established that lectin-carbohydrate interactions play a major role in the immune system, in that they mediate and regulate several interactions that are part of the immune response. Despite obvious differences between the immune system in animals and plants, there are also striking similarities. In both cases, lectins can play a role as pattern recognition receptors, recognizing the pathogens and initiating the stress response. Although plants do not possess an adaptive immune system, they are able to imprint a stress memory, a mechanism in which lectins can be involved. This review will focus on the role of lectins in the immune system of animals and plants.


Insect Biochemistry and Molecular Biology | 2017

Diversity and functions of protein glycosylation in insects

Tomasz Walski; Kristof De Schutter; Els J. M. Van Damme; Guy Smagghe

The majority of proteins is modified with carbohydrate structures. This modification, called glycosylation, was shown to be crucial for protein folding, stability and subcellular location, as well as protein-protein interactions, recognition and signaling. Protein glycosylation is involved in multiple physiological processes, including embryonic development, growth, circadian rhythms, cell attachment as well as maintenance of organ structure, immunity and fertility. Although the general principles of glycosylation are similar among eukaryotic organisms, insects synthesize a distinct repertoire of glycan structures compared to plants and vertebrates. Consequently, a number of unique insect glycans mediate functions specific to this class of invertebrates. For instance, the core α1,3-fucosylation of N-glycans is absent in vertebrates, while in insects this modification is crucial for the development of wings and the nervous system. At present, most of the data on insect glycobiology comes from research in Drosophila. Yet, progressively more information on the glycan structures and the importance of glycosylation in other insects like beetles, caterpillars, aphids and bees is becoming available. This review gives a summary of the current knowledge and recent progress related to glycan diversity and function(s) of protein glycosylation in insects. We focus on N- and O-glycosylation, their synthesis, physiological role(s), as well as the molecular and biochemical basis of these processes.


Methods of Molecular Biology | 2012

Pichia surface display: a tool for screening single domain antibodies.

Kristof De Schutter; Nico Callewaert

Yeast surface display is being employed as an efficient tool for the isolation and engineering of traditional antibody fragments, both scFv and Fab, as well as single domain antibodies. Here we describe the protocols for a yeast surface display system developed in the methylothrophic yeast Pichia pastoris, the most commonly used yeast species for protein production. In this system the immune or maturated library of single domain antibodies is fused to the C-terminal domain of Saccharomyces cerevisiae alpha-agglutinin gene (SAG1) and expressed on the surface of P. pastoris cells. Labeling with ligands enables rapid and quantitative analysis in conjunction with isolation of single domain antibodies with the desired characteristics.


Rice | 2017

Evolutionary relationships and expression analysis of EUL domain proteins in rice ( Oryza sativa )

Kristof De Schutter; Mariya Tsaneva; Shubhada Rajabhau Kulkarni; Pierre Rougé; Klaas Vandepoele; Els J. M. Van Damme

BackgroundLectins, defined as ‘Proteins that can recognize and bind specific carbohydrate structures’, are widespread among all kingdoms of life and play an important role in various biological processes in the cell. Most plant lectins are involved in stress signaling and/or defense. The family of Euonymus-related lectins (EULs) represents a group of stress-related lectins composed of one or two EUL domains. The latter protein domain is unique in that it is ubiquitous in land plants, suggesting an important role for these proteins.ResultsDespite the availability of multiple completely sequenced rice genomes, little is known on the occurrence of lectins in rice. We identified 329 putative lectin genes in the genome of Oryza sativa subsp. japonica belonging to nine out of 12 plant lectin families. In this paper, an in-depth molecular characterization of the EUL family of rice was performed. In addition, analyses of the promoter sequences and investigation of the transcript levels for these EUL genes enabled retrieval of important information related to the function and stress responsiveness of these lectins. Finally, a comparative analysis between rice cultivars and several monocot and dicot species revealed a high degree of sequence conservation within the EUL domain as well as in the domain organization of these lectins.ConclusionsThe presence of EULs throughout the plant kingdom and the high degree of sequence conservation in the EUL domain suggest that these proteins serve an important function in the plant cell. Analysis of the promoter region of the rice EUL genes revealed a diversity of stress responsive elements. Furthermore analysis of the expression profiles of the EUL genes confirmed that they are differentially regulated in response to several types of stress. These data suggest a potential role for the EULs in plant stress signaling and defense.


International Journal of Molecular Sciences | 2017

Comparative Study of Lectin Domains in Model Species: New Insights into Evolutionary Dynamics

Sofie Van Holle; Kristof De Schutter; Lore Eggermont; Mariya Tsaneva; Liuyi Dang; Els J. M. Van Damme

Lectins are present throughout the plant kingdom and are reported to be involved in diverse biological processes. In this study, we provide a comparative analysis of the lectin families from model species in a phylogenetic framework. The analysis focuses on the different plant lectin domains identified in five representative core angiosperm genomes (Arabidopsis thaliana, Glycine max, Cucumis sativus, Oryza sativa ssp. japonica and Oryza sativa ssp. indica). The genomes were screened for genes encoding lectin domains using a combination of Basic Local Alignment Search Tool (BLAST), hidden Markov models, and InterProScan analysis. Additionally, phylogenetic relationships were investigated by constructing maximum likelihood phylogenetic trees. The results demonstrate that the majority of the lectin families are present in each of the species under study. Domain organization analysis showed that most identified proteins are multi-domain proteins, owing to the modular rearrangement of protein domains during evolution. Most of these multi-domain proteins are widespread, while others display a lineage-specific distribution. Furthermore, the phylogenetic analyses reveal that some lectin families evolved to be similar to the phylogeny of the plant species, while others share a closer evolutionary history based on the corresponding protein domain architecture. Our results yield insights into the evolutionary relationships and functional divergence of plant lectins.

Collaboration


Dive into the Kristof De Schutter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge