Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristof Kipp is active.

Publication


Featured researches published by Kristof Kipp.


Journal of Strength and Conditioning Research | 2011

Lower extremity biomechanics during weightlifting exercise vary across joint and load.

Kristof Kipp; Chad Harris; Michelle Sabick

Kipp, K, Harris, C, and Sabick, MB. Lower extremity biomechanics during weightlifting exercise vary across joint and load. J Strength Cond Res 25(5): 1229-1234, 2011-The purpose of this study was to determine the effect of load on lower extremity biomechanics during the pull phase of the clean. Kinematic and kinetic data of the 3 joints of the lower extremity were collected while participants performed multiple sets of cleans at 3 percentages: 65, 75, and 85% of 1 repetition maximum (1RM). General linear models with repeated measures were used to assess the influence of load on angular velocities, net torques, powers, and rates of torque development at the ankle, knee, and hip joint. The results suggest that the biomechanical demands required from the lower extremities change with the lifted load and to an extent depend on the respective joint. Most notably, the hip and knee extended significantly faster than the ankle independent of load, whereas the hip and ankle generally produced significantly higher torques than the knee did. Torque, rate of torque development (RTD), and power were maximimal at 85% of 1RM for the ankle joint and at 75% of 1RM for the knee joint. Torque and RTD at the hip were maximal at loads >75% of 1RM. This study provides important novel information about the mechanical demands of a weightlifting exercise and should be heeded in the design of resistance training programs.


Clinical Biomechanics | 2012

Principal component based analysis of biomechanical inter-trial variability in individuals with chronic ankle instability.

Kristof Kipp; Rianna M. Palmieri-Smith

BACKGROUND Biomechanical variability during movement may influence joint stability in individuals with chronic ankle instability (CAI). The purpose of this study was to compare the kinematic and the kinetic inter-trial variability between healthy and CAI individuals. METHODS Eleven individuals with CAI and 11 matched controls performed five repetitions of a single-leg landing task. Biomechanical data were collected from 100 ms before to 200 ms after touchdown, and were used to calculate touchdown angles, peak angles and moments at the ankle joint in the frontal and sagittal planes. In addition, principal component analyses were used to quantify kinematic and kinetic patterns in the same planes across the 300 ms time window. Five trial averages and inter-trial variability were calculated for all variables for each subject. Independent t-tests were used to compare variables between groups. FINDINGS The CAI group displayed greater inter-trial variability for principal component scores in the sagittal and frontal planes. The sagittal plane principal component captured a phase shift in plantar-flexion motion before touchdown, while the frontal plane principal component captured the general magnitude of motion during the entire movement. The CAI group therefore exhibited greater inter-trial variability in the sagittal plane before touchdown and in the frontal plane during the entire movement. INTERPRETATION While average motions did not differ between groups, the CAI group displayed greater kinematic inter-trial variability when analyzed with the principal component analysis. More variable joint motions may indicate less dynamic stability in the CAI group, which may originate from greater ligamentous laxity or diminished neuromotor control.


Scandinavian Journal of Medicine & Science in Sports | 2015

Spinal and Supraspinal Motor Control Predictors of Rate of Torque Development

Samuel T. Johnson; Kristof Kipp; Marc F. Norcross; Mark A. Hoffman

During explosive movements and potentially injurious situations, the ability to rapidly generate torque is critical. Previous research has suggested that different phases of rate of torque development (RTD) are differentiately controlled. However, the extent to which supraspinal and spinal mechanisms predict RTD at different time intervals is unknown. RTD of the plantarflexors across various phases of contraction (i.e., 0–25, 0–50, 0–100, 0–150, 0–200, and 0–250 ms) was measured in 37 participants. The following predictor variables were also measured: (a) gain of the resting soleus H‐reflex recruitment curve; (b) gain of the resting homonymous post‐activation depression recruitment curve; (c) gain of the GABAergic presynaptic inhibition recruitment curve; (d) the level of postsynaptic recurrent inhibition at rest; (e) level of supraspinal drive assessed by measuring V waves; and (f) the gain of the resting soleus M wave. Stepwise regression analyses were used to determine which variables significantly predicted allometrically scaled RTD. The analyses indicated that supraspinal drive was the dominant predictor of RTD across all phases. Additionally, recurrent inhibition predicted RTD in all of the time intervals except 0–150 ms. These results demonstrate the importance of supraspinal drive and recurrent inhibition to RTD.


Journal of Biomechanics | 2014

Use of audio biofeedback to reduce tibial impact accelerations during running

Claire M. Wood; Kristof Kipp

Visual biofeedback of tibial peak positive acceleration (PPA) during running has been used successfully as a method of gait retraining to reduce PPAs. Audio biofeedback generated from PPA may present a novel, portable alternative. The purpose of this study was to investigate the feasibility of using PPA-generated audio biofeedback to reduce PPAs while running. Nine runners were fitted with a wireless accelerometer on their left tibia. PPAs were recorded and a custom LabVIEW program was used to emit a single beep once the PPA reached a preset threshold. The numerical difference between this threshold and peak PPA during running was scaled to the pitch of the beep, such that a foot strike with greater PPA would result in a beep with higher pitch. Subjects were then instructed to (1) run without any beeps, and/or (2) keep the pitch of the beep as low as possible. Subjects participated in a single testing session that included a five minute warm-up and two rounds of biofeedback, which consisted of five minutes of running with biofeedback followed by five minutes of running without biofeedback. Subjects were able to significantly reduce PPAs during exposure to audio biofeedback. In addition, two rounds of biofeedback were sufficient for subjects to retain a reduction in PPAs without biofeedback. PPA-generated audio biofeedback therefore appears to be a feasible method of gait retraining to reduce PPAs in runners.


Journal of Strength and Conditioning Research | 2012

Weightlifting Performance is Related to Kinematic and Kinetic Patterns of the Hip and Knee Joints

Kristof Kipp; Josh Redden; Michelle Sabick; Chad Harris

Abstract Kipp, K, Redden, J, Sabick, MB, and Harris, C. Weightlifting performance is related to kinematic and kinetic patterns of the hip and knee joints. J Strength Cond Res 26(7): 1838–1844, 2012—The purpose of this study was to investigate the correlations between biomechanical outcome measures and weightlifting performance. Joint kinematics and kinetics of the hip, knee, and ankle were calculated while 10 subjects performed a clean at 85% of 1 repetition maximum (1RM). Kinematic and kinetic time-series patterns were extracted with principal components analysis. Discrete scores for each time-series pattern were calculated and used to determine how each pattern was related to body mass–normalized 1RM. Two hip kinematic and 2 knee kinetic patterns were significantly correlated with relative 1RM. The kinematic patterns captured hip and trunk motions during the first pull and hip joint motion during the movement transition between the first and second pulls. The first kinetic pattern captured a peak in the knee extension moment during the second pull. The second kinetic pattern captured a spatiotemporal shift in the timing and amplitude of the peak knee extension moment. The kinematic results suggest that greater lift mass was associated with steady trunk position during the first pull and less hip extension motion during the second-knee bend transition. Further, the kinetic results suggest that greater lift mass was associated with a smaller knee extensor moments during the first pull, but greater knee extension moments during the second pull, and an earlier temporal transition between knee flexion-extension moments at the beginning of the second pull. Collectively, these results highlight the importance of controlled trunk and hip motions during the first pull and rapid employment of the knee extensor muscles during the second pull in relation to weightlifting performance.


Journal of Strength and Conditioning Research | 2016

Hip External Rotator Strength Is Associated With Better Dynamic Control of the Lower Extremity During Landing Tasks

Philip Malloy; Alexander M. Morgan; Carolyn M. Meinerz; Christopher F. Geiser; Kristof Kipp

Abstract Malloy, PJ, Morgan, AM, Meinerz, CM, Geiser, CF, and Kipp, K. Hip external rotator strength is associated with better dynamic control of the lower extremity during landing tasks. J Strength Cond Res 30(1): 282–291, 2016—The purpose of this study was to determine the association between hip strength and lower extremity kinematics and kinetics during unanticipated single-leg landing and cutting tasks in collegiate female soccer players. Twenty-three National Collegiate Athletic Association division I female soccer players were recruited for strength testing and biomechanical analysis. Maximal isometric hip abduction and external rotation strength were measured using a hand-held dynamometer and expressed as muscle torque (force × femoral length) and normalized to body weight. Three-dimensional lower extremity kinematics and kinetics were assessed with motion analysis and force plates, and an inverse dynamics approach was used to calculate net internal joint moments that were normalized to body weight. Greater hip external rotator strength was significantly associated with greater peak hip external rotation moments (r = 0.47; p = 0.021), greater peak knee internal rotation moments (r = 0.41; p = 0.048), greater hip frontal plane excursion (r = 0.49; p = 0.017), and less knee transverse plane excursion (r = −0.56; p = 0.004) during unanticipated single-leg landing and cutting tasks. In addition, a statistical trend was detected between hip external rotator strength and peak hip frontal plane moments (r = 0.39; p = 0.06). The results suggest that females with greater hip external rotator strength demonstrate better dynamic control of the lower extremity during unanticipated single-leg landing and cutting tasks and provide further support for the link between hip strength and lower extremity landing mechanics.


Clinical Biomechanics | 2013

Differences in kinematic control of ankle joint motions in people with chronic ankle instability

Kristof Kipp; Rianna M. Palmieri-Smith

BACKGROUND People with chronic ankle instability display different ankle joint motions compared to healthy people. The purpose of this study was to investigate the strategies used to control ankle joint motions between a group of people with chronic ankle instability and a group of healthy, matched controls. METHODS Kinematic data were collected from 11 people with chronic ankle instability and 11 matched control subjects as they performed a single-leg land-and-cut maneuver. Three-dimensional ankle joint angles were calculated from 100 ms before, to 200 ms after landing. Kinematic control of the three rotational ankle joint degrees of freedom was investigated by simultaneously examining the three-dimensional co-variation of plantarflexion/dorsiflexion, toe-in/toe-out rotation, and inversion/eversion motions with principal component analysis. FINDINGS Group differences in the variance proportions of the first two principal components indicated that the angular co-variation between ankle joint motions was more linear in the control group, but more planar in the chronic ankle instability group. Frontal and transverse plane motions, in particular, contributed to the group differences in the linearity and planarity of angular co-variation. INTERPRETATIONS People with chronic ankle instability use a different kinematic control strategy to coordinate ankle joint motions during a single-leg landing task. Compared to the healthy group, the chronic ankle instability groups control strategy appeared to be more complex and involved joint-specific contributions that would tend to predispose this group to recurring episodes of instability.


Journal of Athletic Training | 2015

Anticipatory Effects on Lower Extremity Neuromechanics During a Cutting Task

Carolyn M. Meinerz; Philip Malloy; Christopher F. Geiser; Kristof Kipp

CONTEXT Continued research into the mechanism of noncontact anterior cruciate ligament injury helps to improve clinical interventions and injury-prevention strategies. A better understanding of the effects of anticipation on landing neuromechanics may benefit training interventions. OBJECTIVE To determine the effects of anticipation on lower extremity neuromechanics during a single-legged land-and-cut task. DESIGN Controlled laboratory study. SETTING University biomechanics laboratory. PARTICIPANTS Eighteen female National Collegiate Athletic Association Division I collegiate soccer players (age = 19.7 ± 0.8 years, height = 167.3 ± 6.0 cm, mass = 66.1 ± 2.1 kg). INTERVENTION(S) Participants performed a single-legged land-and-cut task under anticipated and unanticipated conditions. MAIN OUTCOME MEASURE(S) Three-dimensional initial contact angles, peak joint angles, and peak internal joint moments and peak vertical ground reaction forces and sagittal-plane energy absorption of the 3 lower extremity joints; muscle activation of selected hip- and knee-joint muscles. RESULTS Unanticipated cuts resulted in less knee flexion at initial contact and greater ankle toe-in displacement. Unanticipated cuts were also characterized by greater internal hip-abductor and external-rotator moments and smaller internal knee-extensor and external-rotator moments. Muscle-activation profiles during unanticipated cuts were associated with greater activation of the gluteus maximus during the precontact and landing phases. CONCLUSIONS Performing a cutting task under unanticipated conditions changed lower extremity neuromechanics compared with anticipated conditions. Most of the observed changes in lower extremity neuromechanics indicated the adoption of a hip-focused strategy during the unanticipated condition.


Journal of Applied Biomechanics | 2014

Muscle Synergies During a Single-Leg Drop-Landing in Boys and Girls

Kristof Kipp; Ronald P. Pfeiffer; Michelle Sabick; Chad Harris; Jeanie Sutter; Seth Kuhlman; Kevin G. Shea

The purpose of this study was to investigate muscle activation patterns during a landing task in boys and girls through the use of muscle synergies. Electromyographical data from six lower extremity muscles were collected from 11 boys and 16 girls while they performed single-leg drop-landings. Electromyographical data from six leg muscles were rectified, smoothed, and normalized to maximum dynamic muscle activity during landing. Data from 100 ms before to 100 ms after touchdown were submitted to factor analyses to extract muscle synergies along with the associated activation and weighing coefficients. Boys and girls both used three muscle synergies. The activation coefficients of these synergies captured muscle activity during the prelanding, touchdown, and postlanding phases of the single-leg drop-landing. Analysis of the weighing coefficients indicated that within the extracted muscle synergies the girls emphasized activation of the medial hamstring muscle during the prelanding and touchdown synergy whereas boys emphasized activation of the vastus medialis during the postlanding synergy. Although boys and girls use similar muscle synergies during single-leg drop-landings, they differed in which muscles were emphasized within these synergies. The observed differences in aspects related to the muscle synergies during landing may have implications with respect to knee injury risk.


Journal of Strength and Conditioning Research | 2013

Correlations Between Internal and External Power Outputs During Weightlifting Exercise

Kristof Kipp; Chad Harris; Michelle Sabick

Abstract Kipp, K, Harris, C, and Sabick, MB. Correlations between internal and external power outputs during weightlifting exercise. J Strength Cond Res 27(4): 1025–1030, 2013—Identifying loads that maximize mechanical power is important because training at such loads may optimize gains in dynamic athletic performance. The purpose of this study was to examine correlations between measures of external mechanical power output and internal mechanical joint power output across different loads during a weightlifting exercise. Ten subjects performed 3 sets of the clean exercise at 65, 75, and 85% of 1 repetition maximum (1RM). Peak external mechanical power output was calculated with 4 commonly used methods, whereas an inverse dynamics approach was used to calculate peak internal mechanical power output for the hip, knee, and ankle joints along with the peak of the sum of all internal joint powers. All peak mechanical power outputs were expressed as relative peak power by either ratio (watts per kilogram) or allometrically scaling to body mass (W·kg−0.67). Correlation coefficients were used to compare power output measures. The greatest numbers of significant correlations between internal and external power outputs were observed at 85% of 1RM, at this load hip and knee joint power outputs were correlated to external mechanical power output when calculated with the traditional work-energy method. In addition, the peak sum of all mechanical joint powers was correlated to mechanical power output when calculated with the impulse-momentum method at loads of 75 and 85% of the 1RM. Allometric scaling of power outputs yielded one more significant correlation than did the ratio scaled power outputs. These findings support the use of the work-energy method when making inferences about internal joint powers from external power outputs when loads equal to 85% of 1RM are being lifted. In addition, the impulse-momentum method may be used to make inferences about the sum of all internal joint powers from external power outputs when loads between 75 and 85% of 1RM are being lifted.

Collaboration


Dive into the Kristof Kipp's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kent J. Adams

California State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge