Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristofer Modig is active.

Publication


Featured researches published by Kristofer Modig.


Journal of the American Chemical Society | 2010

Protein Flexibility and Conformational Entropy in Ligand Design Targeting the Carbohydrate Recognition Domain of Galectin-3

Carl Diehl; Olof Engström; Tamara Delaine; Maria Håkansson; Samuel Genheden; Kristofer Modig; Hakon Leffler; Ulf Ryde; Ulf J. Nilsson; Mikael Akke

Rational drug design is predicated on knowledge of the three-dimensional structure of the protein−ligand complex and the thermodynamics of ligand binding. Despite the fundamental importance of both enthalpy and entropy in driving ligand binding, the role of conformational entropy is rarely addressed in drug design. In this work, we have probed the conformational entropy and its relative contribution to the free energy of ligand binding to the carbohydrate recognition domain of galectin-3. Using a combination of NMR spectroscopy, isothermal titration calorimetry, and X-ray crystallography, we characterized the binding of three ligands with dissociation constants ranging over 2 orders of magnitude. 15N and 2H spin relaxation measurements showed that the protein backbone and side chains respond to ligand binding by increased conformational fluctuations, on average, that differ among the three ligand-bound states. Variability in the response to ligand binding is prominent in the hydrophobic core, where a distal cluster of methyl groups becomes more rigid, whereas methyl groups closer to the binding site become more flexible. The results reveal an intricate interplay between structure and conformational fluctuations in the different complexes that fine-tunes the affinity. The estimated change in conformational entropy is comparable in magnitude to the binding enthalpy, demonstrating that it contributes favorably and significantly to ligand binding. We speculate that the relatively weak inherent protein−carbohydrate interactions and limited hydrophobic effect associated with oligosaccharide binding might have exerted evolutionary pressure on carbohydrate-binding proteins to increase the affinity by means of conformational entropy.


Journal of Biomolecular NMR | 2009

Conformational entropy changes upon lactose binding to the carbohydrate recognition domain of galectin-3.

Carl Diehl; Samuel Genheden; Kristofer Modig; Ulf Ryde; Mikael Akke

The conformational entropy of proteins can make significant contributions to the free energy of ligand binding. NMR spin relaxation enables site-specific investigation of conformational entropy, via order parameters that parameterize local reorientational fluctuations of rank-2 tensors. Here we have probed the conformational entropy of lactose binding to the carbohydrate recognition domain of galectin-3 (Gal3), a protein that plays an important role in cell growth, cell differentiation, cell cycle regulation, and apoptosis, making it a potential target for therapeutic intervention in inflammation and cancer. We used 15N spin relaxation experiments and molecular dynamics simulations to monitor the backbone amides and secondary amines of the tryptophan and arginine side chains in the ligand-free and lactose-bound states of Gal3. Overall, we observe good agreement between the experimental and computed order parameters of the ligand-free and lactose-bound states. Thus, the 15N spin relaxation data indicate that the molecular dynamics simulations provide reliable information on the conformational entropy of the binding process. The molecular dynamics simulations reveal a correlation between the simulated order parameters and residue-specific backbone entropy, re-emphasizing that order parameters provide useful estimates of local conformational entropy. The present results show that the protein backbone exhibits an increase in conformational entropy upon binding lactose, without any accompanying structural changes.


Biophysical Journal | 2010

Structure and Dynamics of Ribosomal Protein L12: An Ensemble Model Based on SAXS and NMR Relaxation

Pau Bernadó; Kristofer Modig; Przemysław Grela; Dmitri I. Svergun; Marek Tchórzewski; Miquel Pons; Mikael Akke

Ribosomal protein L12 is a two-domain protein that forms dimers mediated by its N-terminal domains. A 20-residue linker separates the N- and C-terminal domains. This linker results in a three-lobe topology with significant flexibility, known to be critical for efficient translation. Here we present an ensemble model of spatial distributions and correlation times for the domain reorientations of L12 that reconciles experimental data from small-angle x-ray scattering and nuclear magnetic resonance. We generated an ensemble of L12 conformations in which the structure of each domain is fixed but the domain orientations are variable. The ensemble reproduces the small-angle x-ray scattering data and the optimized correlation times of its reorientational eigenmodes fit the (15)N relaxation data. The ensemble model reveals intrinsic conformational properties of L12 that help explain its function on the ribosome. The two C-terminal domains sample a large volume and extend further away from the ribosome anchor than expected for a random-chain linker, indicating that the flexible linker has residual order. Furthermore, the distances between each C-terminal domain and the anchor are anticorrelated, indicating that one of them is more retracted on average. We speculate that these properties promote the function of L12 to recruit translation factors and control their activity on the ribosome.


Physical Chemistry Chemical Physics | 2010

High water mobility on the ice-binding surface of a hyperactive antifreeze protein

Kristofer Modig; Johan Qvist; Christopher B. Marshall; Peter L. Davies; Bertil Halle

Antifreeze proteins (AFPs) prevent uncontrolled ice formation in organisms exposed to subzero temperatures by binding irreversibly to specific planes of nascent ice crystals. To understand the thermodynamic driving forces and kinetic mechanism of AFP activity, it is necessary to characterize the hydration behavior of these proteins in solution. With this aim, we have studied the hyperactive insect AFP from Tenebrio molitor (TmAFP) with the (17)O magnetic relaxation dispersion (MRD) method, which selectively monitors the rotational motion and exchange kinetics of water molecules on picosecond-microsecond time scales. The global hydration behavior of TmAFP is found to be similar to non-antifreeze proteins, with no evidence of ice-like or long-ranged modifications of the solvent. However, two sets of structural water molecules, located within the core and on the ice-binding face in the crystal structure of TmAFP, may have functional significance. We find that 2 of the 5 internal water molecules exchange with a residence time of 8 +/- 1 micros at 300 K and a large activation energy of approximately 50 kJ mol(-1), reflecting intermittent large-scale conformational fluctuations in this exceptionally dense and rigid protein. Six water molecules arrayed with ice-like spacing in the central trough on the ice-binding face exchange with bulk water on a sub-nanosecond time scale. The combination of high order and fast exchange may allow these water molecules to contribute entropically to the ice-binding affinity without limiting the absorption rate.


Protein Science | 2003

Water and urea interactions with the native and unfolded forms of a β‐barrel protein

Kristofer Modig; Elizabeth Kurian; Franklyn G. Prendergast; Bertil Halle

A fundamental understanding of protein stability and the mechanism of denaturant action must ultimately rest on detailed knowledge about the structure, solvation, and energetics of the denatured state. Here, we use 17O and 2H magnetic relaxation dispersion (MRD) to study urea‐induced denaturation of intestinal fatty acid‐binding protein (I‐FABP). MRD is among the few methods that can provide molecular‐level information about protein solvation in native as well as denatured states, and it is used here to simultaneously monitor the interactions of urea and water with the unfolding protein. Whereas CD shows an apparently two‐state transition, MRD reveals a more complex process involving at least two intermediates. At least one water molecule binds persistently (with residence time >10 nsec) to the protein even in 7.5 M urea, where the large internal binding cavity is disrupted and CD indicates a fully denatured protein. This may be the water molecule buried near the small hydrophobic folding core at the D–E turn in the native protein. The MRD data also provide insights about transient (residence time <1 nsec) interactions of urea and water with the native and denatured protein. In the denatured state, both water and urea rotation is much more retarded than for a fully solvated polypeptide. The MRD results support a picture of the denatured state where solvent penetrates relatively compact clusters of polypeptide segments.


Journal of Biomolecular NMR | 2008

Model-independent interpretation of NMR relaxation data for unfolded proteins: the acid-denatured state of ACBP.

Kristofer Modig; Flemming M. Poulsen

We have investigated the acid-unfolded state of acyl-coenzyme A binding protein (ACBP) using 15N laboratory frame nuclear magnetic resonance (NMR) relaxation experiments at three magnetic field strengths. The data have been analyzed using standard model-free fitting and models involving distribution of correlation times. In particular, a model-independent method of analysis that does not assume any analytical form for the correlation time distribution is proposed. This method explains correlations between model-free parameters and the analytical distribution parameters found by other authors. The analysis also shows that the relaxation data are consistent with and complementary to information obtained from other parameters, especially secondary chemical shifts and residual dipolar couplings, and strengthens the conclusions of previous observations that three out of the four regions that form helices in the native structure appear to contain residual secondary structure also in the acid-denatured state.


Journal of Molecular Biology | 2003

Water dynamics in the large cavity of three lipid-binding proteins monitored by 17O magnetic relaxation dispersion

Kristofer Modig; Martin Rademacher; Christian Lücke; Bertil Halle

Intracellular lipid-binding proteins contain a large binding cavity filled with water molecules. The role played by these water molecules in ligand binding is not well understood, but their energetic and dynamic properties must be important for protein function. Here, we use the magnetic relaxation dispersion (MRD) of the water 17O resonance to investigate the water molecules in the binding cavity of three different lipid-binding proteins: heart fatty acid-binding protein (H-FABP), ileal lipid-binding protein (I-LBP) and intestinal fatty acid-binding protein (I-FABP). Whereas about half of the crystallographically visible water molecules appear to be expelled by the ligand, we find that ligand binding actually increases the number of water molecules within the cavity. At 300 K, the water molecules in the cavity exchange positions on a time-scale of about 1ns and exchange with external water on longer time-scales (0.01-1 micros). Exchange of water molecules among hydration sites within the cavity should be strongly coupled to ligand motion. Whereas a recent MD simulation indicates that the structure of the cavity water resembles a bulk water droplet, the present MRD results show that its dynamics is more than two orders of magnitude slower than in the bulk. These findings may have significant implications for the strength, specificity and kinetics of lipid binding.


Biochemistry | 2014

Ring Flips Revisited: C-13 Relaxation Dispersion Measurements of Aromatic Side Chain Dynamics and Activation Barriers in Basic Pancreatic Trypsin Inhibitor

Ulrich Weininger; Kristofer Modig; Mikael Akke

Intramolecular motions of proteins are critical for biological function. Transient structural fluctuations underlie a wide range of processes, including enzyme catalysis, ligand binding to buried sites, and generic protein motions, such as 180° rotation of aromatic side chains in the protein interior, but remain poorly understood. Understanding the dynamics and molecular nature of concerted motions requires characterization of their rates and energy barriers. Here we use recently developed (13)C transverse relaxation dispersion methods to improve our current understanding of aromatic ring flips in basic pancreatic trypsin inhibitor (BPTI). We validate these methods by benchmarking ring-flip rates against the three previously characterized cases in BPTI, namely, Y23, Y35, and F45. Further, we measure conformational exchange for one additional aromatic ring, F22, which can be interpreted in terms of a flip rate of 666 s(-1) at 5 °C. Upon inclusion of our previously reported result that Y21 also flips slowly [Weininger, U., et al. (2013) J. Phys. Chem. B 117, 9241-9247], the (13)C relaxation dispersion experiments thus reveal relatively slow ring-flip rates for five of eight aromatic residues in BPTI. These results are in contrast with previous reports, which have estimated that all rings, except Y23, Y35, and F45, flip with a high rate at ambient temperature. The (13)C relaxation dispersion data result in an updated rank order of ring-flip rates in BPTI, which agrees considerably better with that estimated from a recent 1 ms molecular dynamics trajectory than do previously published NMR data. However, significant quantitative differences remain between experiment and simulation, in that the latter yields flip rates that are in many cases too fast by 1-2 orders of magnitude. By measuring flip rates across a temperature range of 5-65 °C, we determined the activation barriers of ring flips for Y23, Y35, and F45. Y23 and F45 have identical activation parameters, suggesting that the fluctuations of the protein core around these residues are similar in character. Y35 differs from the other two in its apparent activation entropy. These results might be rationalized by the fact that Y23 and F45 are located in the same region of the structure while Y35 is remote from the other two rings. As indicated by our new results for the exceptionally well-characterized protein BPTI, (13)C relaxation dispersion experiments open the possibility of studying ring flips in a range of cases wider than that previously possible.


BMC Biology | 2016

Molecular insights into substrate recognition and catalytic mechanism of the chaperone and FKBP peptidyl-prolyl isomerase SlyD.

Esben M. Quistgaard; Ulrich Weininger; Yonca Ural-Blimke; Kristofer Modig; Pär Nordlund; Mikael Akke; Christian Löw

BackgroundPeptidyl-prolyl isomerases (PPIases) catalyze cis/trans isomerization of peptidyl-prolyl bonds, which is often rate-limiting for protein folding. SlyD is a two-domain enzyme containing both a PPIase FK506-binding protein (FKBP) domain and an insert-in-flap (IF) chaperone domain. To date, the interactions of these domains with unfolded proteins have remained rather obscure, with structural information on binding to the FKBP domain being limited to complexes involving various inhibitor compounds or a chemically modified tetrapeptide.ResultsWe have characterized the binding of 15-residue-long unmodified peptides to SlyD from Thermus thermophilus (TtSlyD) in terms of binding thermodynamics and enzyme kinetics through the use of isothermal titration calorimetry, nuclear magnetic resonance spectroscopy, and site-directed mutagenesis. We show that the affinities and enzymatic activity of TtSlyD towards these peptides are much higher than for the chemically modified tetrapeptides that are typically used for activity measurements on FKBPs. In addition, we present a series of crystal structures of TtSlyD with the inhibitor FK506 bound to the FKBP domain, and with 15-residue-long peptides bound to either one or both domains, which reveals that substrates bind in a highly adaptable fashion to the IF domain through β-strand augmentation, and can bind to the FKBP domain as both types VIa1 and VIb-like cis-proline β-turns. Our results furthermore provide important clues to the catalytic mechanism and support the notion of inter-domain cross talk.ConclusionsWe found that 15-residue-long unmodified peptides can serve as better substrate mimics for the IF and FKBP domains than chemically modified tetrapeptides. We furthermore show how such peptides are recognized by each of these domains in TtSlyD, and propose a novel general model for the catalytic mechanism of FKBPs that involves C-terminal rotation around the peptidyl-prolyl bond mediated by stabilization of the twisted transition state in the hydrophobic binding site.


Biochemistry | 2017

Dynamics of Aromatic Side Chains in the Active Site of FKBP12

Ulrich Weininger; Kristofer Modig; Anne Juliane Geitner; Philipp A. M. Schmidpeter; Johanna R. Koch; Mikael Akke

FKBP12, a small human enzyme, aids protein folding by catalyzing cis-trans isomerization of peptidyl-prolyl bonds, and is involved in cell signaling pathways, calcium regulation, and the immune response. The underlying molecular mechanisms are not fully understood, but it is well-known that aromatic residues in the active site and neighboring loops are important for substrate binding and catalysis. Here we report micro- to millisecond exchange dynamics of aromatic side chains in the active site region of ligand-free FKBP12, involving a minor state population of 0.5% and an exchange rate of 3600 s-1, similar to previous results for the backbone and methyl-bearing side chains. The exchange process involves tautomerization of H87. In the major state H87 is highly flexible and occupies the common HNε2 tautomer, while in the minor state it occupies the rare HNδ1 tautomer, which typically requires stabilization by specific interactions, such as hydrogen bonds. This finding suggests that the exchange process is coupled to a rearrangement of the hydrogen bond network around H87. Upon addition of the active-site inhibitor FK506 the exchange of all aromatic residues is quenched, with exception of H87. The H87 resonances are broadened beyond detection, suggesting that interconversion between tautomers prevail in the FK506-bound state. While key active-site residues undergo conformational exchange in the apo state, the exchange rate is considerably faster than the catalytic turnover, as determined herein by Michaelis-Menten type analysis of NMR line shapes and chemical shifts. We discuss alternative interpretations of this observation in terms of FKBP12 function.

Collaboration


Dive into the Kristofer Modig's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge