Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristoffer Forslund is active.

Publication


Featured researches published by Kristoffer Forslund.


Nucleic Acids Research | 2000

The Pfam protein families database

Marco Punta; Penny Coggill; Ruth Y. Eberhardt; Jaina Mistry; John G. Tate; Chris Boursnell; Kristoffer Forslund; Goran Ceric; Jody Clements; Andreas Heger; Liisa Holm; Erik L. L. Sonnhammer; Sean R. Eddy; Alex Bateman; Robert D. Finn

Pfam is a widely used database of protein families, currently containing more than 13 000 manually curated protein families as of release 26.0. Pfam is available via servers in the UK (http://pfam.sanger.ac.uk/), the USA (http://pfam.janelia.org/) and Sweden (http://pfam.sbc.su.se/). Here, we report on changes that have occurred since our 2010 NAR paper (release 24.0). Over the last 2 years, we have generated 1840 new families and increased coverage of the UniProt Knowledgebase (UniProtKB) to nearly 80%. Notably, we have taken the step of opening up the annotation of our families to the Wikipedia community, by linking Pfam families to relevant Wikipedia pages and encouraging the Pfam and Wikipedia communities to improve and expand those pages. We continue to improve the Pfam website and add new visualizations, such as the ‘sunburst’ representation of taxonomic distribution of families. In this work we additionally address two topics that will be of particular interest to the Pfam community. First, we explain the definition and use of family-specific, manually curated gathering thresholds. Second, we discuss some of the features of domains of unknown function (also known as DUFs), which constitute a rapidly growing class of families within Pfam.


Nucleic Acids Research | 2015

STRING v10: protein-protein interaction networks, integrated over the tree of life.

Damian Szklarczyk; Andrea Franceschini; Stefan Wyder; Kristoffer Forslund; Davide Heller; Jaime Huerta-Cepas; Milan Simonovic; Alexander Roth; Alberto Santos; Kalliopi Tsafou; Michael Kuhn; Peer Bork; Lars Juhl Jensen; Christian von Mering

The many functional partnerships and interactions that occur between proteins are at the core of cellular processing and their systematic characterization helps to provide context in molecular systems biology. However, known and predicted interactions are scattered over multiple resources, and the available data exhibit notable differences in terms of quality and completeness. The STRING database (http://string-db.org) aims to provide a critical assessment and integration of protein–protein interactions, including direct (physical) as well as indirect (functional) associations. The new version 10.0 of STRING covers more than 2000 organisms, which has necessitated novel, scalable algorithms for transferring interaction information between organisms. For this purpose, we have introduced hierarchical and self-consistent orthology annotations for all interacting proteins, grouping the proteins into families at various levels of phylogenetic resolution. Further improvements in version 10.0 include a completely redesigned prediction pipeline for inferring protein–protein associations from co-expression data, an API interface for the R computing environment and improved statistical analysis for enrichment tests in user-provided networks.


Nucleic Acids Research | 2010

InParanoid 7: new algorithms and tools for eukaryotic orthology analysis

Gabriel Östlund; Thomas Schmitt; Kristoffer Forslund; Tina Köstler; David N. Messina; Sanjit Roopra; Oliver Frings; Erik L. L. Sonnhammer

The InParanoid project gathers proteomes of completely sequenced eukaryotic species plus Escherichia coli and calculates pairwise ortholog relationships among them. The new release 7.0 of the database has grown by an order of magnitude over the previous version and now includes 100 species and their collective 1.3 million proteins organized into 42.7 million pairwise ortholog groups. The InParanoid algorithm itself has been revised and is now both more specific and sensitive. Based on results from our recent benchmarking of low-complexity filters in homology assignment, a two-pass BLAST approach was developed that makes use of high-precision compositional score matrix adjustment, but avoids the alignment truncation that sometimes follows. We have also updated the InParanoid web site (http://InParanoid.sbc.su.se). Several features have been added, the response times have been improved and the site now sports a new, clearer look. As the number of ortholog databases has grown, it has become difficult to compare among these resources due to a lack of standardized source data and incompatible representations of ortholog relationships. To facilitate data exchange and comparisons among ortholog databases, we have developed and are making available two XML schemas: SeqXML for the input sequences and OrthoXML for the output ortholog clusters.


Nature | 2015

Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota

Kristoffer Forslund; Falk Hildebrand; Trine Nielsen; Gwen Falony; Shinichi Sunagawa; Edi Prifti; Sara Vieira-Silva; Valborg Gudmundsdottir; Helle Krogh Pedersen; Manimozhiyan Arumugam; Karsten Kristiansen; Anita Yvonne Voigt; Henrik Vestergaard; Rajna Hercog; Paul Igor Costea; Jens Roat Kultima; Junhua Li; Torben Jørgensen; Florence Levenez; Joël Doré; H. Bjørn Nielsen; Søren Brunak; Jeroen Raes; Torben Hansen; Jun Wang; S. Dusko Ehrlich; Peer Bork; Oluf Pedersen

Citing this paper Please note that where the full-text provided on Kings Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publishers definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publishers website for any subsequent corrections.In recent years, several associations between common chronic human disorders and altered gut microbiome composition and function have been reported. In most of these reports, treatment regimens were not controlled for and conclusions could thus be confounded by the effects of various drugs on the microbiota, which may obscure microbial causes, protective factors or diagnostically relevant signals. Our study addresses disease and drug signatures in the human gut microbiome of type 2 diabetes mellitus (T2D). Two previous quantitative gut metagenomics studies of T2D patients that were unstratified for treatment yielded divergent conclusions regarding its associated gut microbial dysbiosis. Here we show, using 784 available human gut metagenomes, how antidiabetic medication confounds these results, and analyse in detail the effects of the most widely used antidiabetic drug metformin. We provide support for microbial mediation of the therapeutic effects of metformin through short-chain fatty acid production, as well as for potential microbiota-mediated mechanisms behind known intestinal adverse effects in the form of a relative increase in abundance of Escherichia species. Controlling for metformin treatment, we report a unified signature of gut microbiome shifts in T2D with a depletion of butyrate-producing taxa. These in turn cause functional microbiome shifts, in part alleviated by metformin-induced changes. Overall, the present study emphasizes the need to disentangle gut microbiota signatures of specific human diseases from those of medication.


Nucleic Acids Research | 2016

eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences

Jaime Huerta-Cepas; Damian Szklarczyk; Kristoffer Forslund; Helen Cook; Davide Heller; Mathias C. Walter; Thomas Rattei; Daniel R. Mende; Shinichi Sunagawa; Michael Kuhn; Lars Juhl Jensen; Christian von Mering; Peer Bork

eggNOG is a public resource that provides Orthologous Groups (OGs) of proteins at different taxonomic levels, each with integrated and summarized functional annotations. Developments since the latest public release include changes to the algorithm for creating OGs across taxonomic levels, making nested groups hierarchically consistent. This allows for a better propagation of functional terms across nested OGs and led to the novel annotation of 95 890 previously uncharacterized OGs, increasing overall annotation coverage from 67% to 72%. The functional annotations of OGs have been expanded to also provide Gene Ontology terms, KEGG pathways and SMART/Pfam domains for each group. Moreover, eggNOG now provides pairwise orthology relationships within OGs based on analysis of phylogenetic trees. We have also incorporated a framework for quickly mapping novel sequences to OGs based on precomputed HMM profiles. Finally, eggNOG version 4.5 incorporates a novel data set spanning 2605 viral OGs, covering 5228 proteins from 352 viral proteomes. All data are accessible for bulk downloading, as a web-service, and through a completely redesigned web interface. The new access points provide faster searches and a number of new browsing and visualization capabilities, facilitating the needs of both experts and less experienced users. eggNOG v4.5 is available at http://eggnog.embl.de.


Nucleic Acids Research | 2014

eggNOG v4.0: nested orthology inference across 3686 organisms

Sean Powell; Kristoffer Forslund; Damian Szklarczyk; Kalliopi Trachana; Alexander Roth; Jaime Huerta-Cepas; Toni Gabaldón; Thomas Rattei; Christopher J. Creevey; Michael Kuhn; Lars Juhl Jensen; Christian von Mering; Peer Bork

With the increasing availability of various ‘omics data, high-quality orthology assignment is crucial for evolutionary and functional genomics studies. We here present the fourth version of the eggNOG database (available at http://eggnog.embl.de) that derives nonsupervised orthologous groups (NOGs) from complete genomes, and then applies a comprehensive characterization and analysis pipeline to the resulting gene families. Compared with the previous version, we have more than tripled the underlying species set to cover 3686 organisms, keeping track with genome project completions while prioritizing the inclusion of high-quality genomes to minimize error propagation from incomplete proteome sets. Major technological advances include (i) a robust and scalable procedure for the identification and inclusion of high-quality genomes, (ii) provision of orthologous groups for 107 different taxonomic levels compared with 41 in eggNOGv3, (iii) identification and annotation of particularly closely related orthologous groups, facilitating analysis of related gene families, (iv) improvements of the clustering and functional annotation approach, (v) adoption of a revised tree building procedure based on the multiple alignments generated during the process and (vi) implementation of quality control procedures throughout the entire pipeline. As in previous versions, eggNOGv4 provides multiple sequence alignments and maximum-likelihood trees, as well as broad functional annotation. Users can access the complete database of orthologous groups via a web interface, as well as through bulk download.


Nature | 2016

Human gut microbes impact host serum metabolome and insulin sensitivity

Helle Krogh Pedersen; Valborg Gudmundsdottir; Henrik Bjørn Nielsen; Tuulia Hyötyläinen; Trine Nielsen; Benjamin Anderschou Holbech Jensen; Kristoffer Forslund; Falk Hildebrand; Edi Prifti; Gwen Falony; Florence Levenez; Joël Doré; Ismo Mattila; Damian Rafal Plichta; Päivi Pöhö; Lars Hellgren; Manimozhiyan Arumugam; Shinichi Sunagawa; Sara Vieira-Silva; Torben Jørgensen; Jacob Holm; Kajetan Trošt; Karsten Kristiansen; Susanne Brix; Jeroen Raes; Jun Wang; Torben Hansen; Peer Bork; Søren Brunak; Matej Orešič

Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin-resistant individuals is characterized by increased levels of branched-chain amino acids (BCAAs), which correlate with a gut microbiome that has an enriched biosynthetic potential for BCAAs and is deprived of genes encoding bacterial inward transporters for these amino acids. Prevotella copri and Bacteroides vulgatus are identified as the main species driving the association between biosynthesis of BCAAs and insulin resistance, and in mice we demonstrate that P. copri can induce insulin resistance, aggravate glucose intolerance and augment circulating levels of BCAAs. Our findings suggest that microbial targets may have the potential to diminish insulin resistance and reduce the incidence of common metabolic and cardiovascular disorders.


Nature Communications | 2016

Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children

Katri Korpela; Anne Salonen; Lauri J. Virta; Riina A. Kekkonen; Kristoffer Forslund; Peer Bork; Willem M. de Vos

Early-life antibiotic use is associated with increased risk for metabolic and immunological diseases, and mouse studies indicate a causal role of the disrupted microbiome. However, little is known about the impacts of antibiotics on the developing microbiome of children. Here we use phylogenetics, metagenomics and individual antibiotic purchase records to show that macrolide use in 2–7 year-old Finnish children (N=142; sampled at two time points) is associated with a long-lasting shift in microbiota composition and metabolism. The shift includes depletion of Actinobacteria, increase in Bacteroidetes and Proteobacteria, decrease in bile-salt hydrolase and increase in macrolide resistance. Furthermore, macrolide use in early life is associated with increased risk of asthma and predisposes to antibiotic-associated weight gain. Overweight and asthmatic children have distinct microbiota compositions. Penicillins leave a weaker mark on the microbiota than macrolides. Our results support the idea that, without compromising clinical practice, the impact on the intestinal microbiota should be considered when prescribing antibiotics.


Bioinformatics | 2008

Predicting protein function from domain content

Kristoffer Forslund; Erik L. L. Sonnhammer

MOTIVATION Computational assignment of protein function may be the single most vital application of bioinformatics in the post-genome era. These assignments are made based on various protein features, where one is the presence of identifiable domains. The relationship between protein domain content and function is important to investigate, to understand how domain combinations encode complex functions. RESULTS Two different models are presented on how protein domain combinations yield specific functions: one rule-based and one probabilistic. We demonstrate how these are useful for Gene Ontology annotation transfer. The first is an intuitive generalization of the Pfam2GO mapping, and detects cases of strict functional implications of sets of domains. The second uses a probabilistic model to represent the relationship between domain content and annotation terms, and was found to be better suited for incomplete training sets. We implemented these models as predictors of Gene Ontology functional annotation terms. Both predictors were more accurate than conventional best BLAST-hit annotation transfer and more sensitive than a single-domain model on a large-scale dataset. We present a number of cases where combinations of Pfam-A protein domains predict functional terms that do not follow from the individual domains. AVAILABILITY Scripts and documentation are available for download at http://sonnhammer.sbc.su.se/multipfam2go_source_docs.tar


Nature | 2017

Salt-responsive gut commensal modulates TH17 axis and disease

Nicola Wilck; Mariana Matus; Sean M. Kearney; Scott W. Olesen; Kristoffer Forslund; Hendrik Bartolomaeus; Stefanie Haase; Anja Mähler; András Balogh; Lajos Markó; Olga Vvedenskaya; Friedrich H. Kleiner; Dmitry Tsvetkov; Lars Klug; Paul Igor Costea; Shinichi Sunagawa; Lisa M. Maier; Natalia Rakova; Valentin Schatz; Patrick Neubert; Christian Frätzer; Alexander Krannich; Maik Gollasch; Diana A. Grohme; Beatriz F. Côrte-Real; Roman G. Gerlach; Marijana Basic; Athanasios Typas; Chuan Wu; Jens Titze

A Western lifestyle with high salt consumption can lead to hypertension and cardiovascular disease. High salt may additionally drive autoimmunity by inducing T helper 17 (TH17) cells, which can also contribute to hypertension. Induction of TH17 cells depends on gut microbiota; however, the effect of salt on the gut microbiome is unknown. Here we show that high salt intake affects the gut microbiome in mice, particularly by depleting Lactobacillus murinus. Consequently, treatment of mice with L. murinus prevented salt-induced aggravation of actively induced experimental autoimmune encephalomyelitis and salt-sensitive hypertension by modulating TH17 cells. In line with these findings, a moderate high-salt challenge in a pilot study in humans reduced intestinal survival of Lactobacillus spp., increased TH17 cells and increased blood pressure. Our results connect high salt intake to the gut–immune axis and highlight the gut microbiome as a potential therapeutic target to counteract salt-sensitive conditions.

Collaboration


Dive into the Kristoffer Forslund's collaboration.

Top Co-Authors

Avatar

Peer Bork

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Damian Szklarczyk

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Falk Hildebrand

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Igor Costea

Royal Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge