Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristoffer Ostridge is active.

Publication


Featured researches published by Kristoffer Ostridge.


Thorax | 2016

Relationship between pulmonary matrix metalloproteinases and quantitative CT markers of small airways disease and emphysema in COPD

Kristoffer Ostridge; Nicholas Williams; Viktoriya Kim; Michael Bennett; Stephen Harden; Lindsay Welch; Simon Bourne; Ngaire A. Coombs; Paul T. Elkington; Karl J. Staples; Tom Wilkinson

Background Matrix metalloproteinases (MMPs) are proteolytic enzymes that can degrade the extracellular matrix and drive tissue remodelling, key processes in the pathogenesis of COPD. The development of small airway disease has been identified as a critical mechanism in the early development of airflow obstruction but the contribution of MMPs in human disease is poorly characterised. Objectives We investigated the role of MMPs and inflammatory cytokines in the lung by quantifying levels and determining relationships with the key pathological components of COPD in patients and healthy controls. Methods We analysed levels of MMPs and inflammatory cytokines in bronchoalveolar lavage from 24 COPD and 8 control subjects. Each subject underwent spirometry and high-resolution CT. Image analysis quantitatively assessed emphysema, bronchial wall thickening and small airways disease. Results Multiple MMPs (MMP-1, -2, -3, -8, -9 and -10) and cytokines (interleukin (IL) 6 and IL-8) were elevated in lungs of subjects with COPD. MMP-3, -7, -8, -9, -10 and -12 concentrations closely associated with CT markers of small airways disease. Emphysema severity was also associated with MMP-3, -7 and -10. However, there were no strong relationships between MMPs and bronchial wall thickness of the larger airways. Conclusions Pulmonary MMP concentrations are directly associated with the extent of gas trapping and small airways disease identified on CT scan. This study suggests that MMPs play a significant role in small airways remodelling, a key feature in the pathogenesis of COPD. Trial registration number NCT01701869


Thorax | 2017

A prospective, observational cohort study of the seasonal dynamics of airway pathogens in the aetiology of exacerbations in COPD

Tom Wilkinson; Emmanuel Aris; Simon Bourne; Stuart C. Clarke; Mathieu Peeters; Thierry Pascal; Sonia Schoonbroodt; Andrew Tuck; Viktoriya Kim; Kristoffer Ostridge; Karl J. Staples; Nicholas Williams; Anthony P. Williams; Stephen A. Wootton; Jeanne-Marie Devaster

Background The aetiology of acute exacerbations of COPD (AECOPD) is incompletely understood. Understanding the relationship between chronic bacterial airway infection and viral exposure may explain the incidence and seasonality of these events. Methods In this prospective, observational cohort study (NCT01360398), patients with COPD aged 40–85 years underwent sputum sampling monthly and at exacerbation for detection of bacteria and viruses. Results are presented for subjects in the full cohort, followed for 1 year. Interactions between exacerbation occurrence and pathogens were investigated by generalised estimating equation and stratified conditional logistic regression analyses. Findings The mean exacerbation rate per patient-year was 3.04 (95% CI 2.63 to 3.50). At AECOPD, the most common bacterial species were non-typeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis, and the most common virus was rhinovirus. Logistic regression analyses (culture bacterial detection) showed significant OR for AECOPD occurrence when M. catarrhalis was detected regardless of season (5.09 (95% CI 2.76 to 9.41)). When NTHi was detected, the increased risk of exacerbation was greater in high season (October–March, OR 3.04 (1.80 to 5.13)) than low season (OR 1.22 (0.68 to 2.22)). Bacterial and viral coinfection was more frequent at exacerbation (24.9%) than stable state (8.6%). A significant interaction was detected between NTHi and rhinovirus presence and AECOPD risk (OR 5.18 (1.92 to 13.99); p=0.031). Conclusions AECOPD aetiology varies with season. Rises in incidence in winter may be driven by increased pathogen presence as well as an interaction between NTHi airway infection and effects of viral infection. Trial registration number Results, NCT01360398.


European Respiratory Journal | 2017

Impact and associations of eosinophilic inflammation in COPD: analysis of the AERIS cohort

Viktoriya Kim; Ngaire A. Coombs; Karl J. Staples; Kristoffer Ostridge; Nicholas Williams; Stephen A. Wootton; Jeanne-Marie Devaster; Emmanuel Aris; Stuart C. Clarke; Andrew Tuck; Simon Bourne; Tom Wilkinson

Eosinophilic inflammation in chronic obstructive pulmonary disease (COPD) predicts response to treatment, especially corticosteroids. We studied the nature of eosinophilic inflammation in COPD prospectively to examine the stability of this phenotype and its dynamics across exacerbations, and its associations with clinical phenotype, exacerbations and infection. 127 patients aged 40–85 years with moderate to very severe COPD underwent repeated blood and sputum sampling at stable visits and within 72 h of exacerbation for 1 year. Blood eosinophils ≥2% was prevalent at baseline, and predicted both predominantly raised stable-state eosinophils across the year (area under the curve 0.841, 95% CI 0.755–0.928) and increased risk of eosinophilic inflammation at exacerbation (OR 9.16; p<0.001). Eosinophils ≥2% at exacerbation and eosinophil predominance at stable visits were associated with a lower risk of bacterial presence at exacerbation (OR 0.49; p=0.049 and OR 0.25; p=0.065, respectively). Bacterial infection at exacerbation was highly seasonal (winter versus summer OR 4.74; p=0.011) in predominantly eosinophilic patients. Eosinophilic inflammation is a common and stable phenotype in COPD. Blood eosinophil counts in the stable state can predict the nature of inflammation at future exacerbations, which when combined with an understanding of seasonal variation provides the basis for the development of new treatment paradigms for this important condition. Blood eosinophil levels in COPD predict the nature of inflammation at future exacerbations and may guide therapy http://ow.ly/W10o30dNQiq


European Respiratory Journal | 2016

Present and future utility of computed tomography scanning in the assessment and management of COPD.

Kristoffer Ostridge; Tom Wilkinson

Computed tomography (CT) is the modality of choice for imaging the thorax and lung structure. In chronic obstructive pulmonary disease (COPD), it used to recognise the key morphological features of emphysema, bronchial wall thickening and gas trapping. Despite this, its place in the investigation and management of COPD is yet to be determined, and it is not routinely recommended. However, lung CT already has important clinical applications where it can be used to diagnose concomitant pathology and determine which patients with severe emphysema are appropriate for lung volume reduction procedures. Furthermore, novel quantitative analysis techniques permit objective measurements of pulmonary and extrapulmonary manifestations of the disease. These techniques can give important insights into COPD, and help explore the heterogeneity and underlying mechanisms of the condition. In time, it is hoped that these techniques can be used in clinical trials to help develop disease-specific therapy and, ultimately, as a clinical tool in identifying patients who would benefit most from new and existing treatments. This review discusses the current clinical applications for CT imaging in COPD and quantification techniques, and its potential future role in stratifying disease for optimal outcome. CT imaging has an important and rapidly developing role to play in the assessment of COPD http://ow.ly/ZREg3


Respiratory Research | 2016

Distinct emphysema subtypes defined by quantitative CT analysis are associated with specific pulmonary matrix metalloproteinases.

Kristoffer Ostridge; Nicholas Williams; Viktoriya Kim; Stephen Harden; Simon Bourne; Ngaire A. Coombs; Paul T. Elkington; Raúl San José Estépar; George R. Washko; Karl J. Staples; Tom Wilkinson

BackgroundEmphysema is characterised by distinct pathological sub-types, but little is known about the divergent underlying aetiology. Matrix-metalloproteinases (MMPs) are proteolytic enzymes that can degrade the extracellular matrix and have been identified as potentially important in the development of emphysema. However, the relationship between MMPs and emphysema sub-type is unknown. We investigated the role of MMPs and their inhibitors in the development of emphysema sub-types by quantifying levels and determining relationships with these sub-types in mild-moderate COPD patients and ex/current smokers with preserved lung function. MethodsTwenty-four mild-moderate COPD and 8 ex/current smokers with preserved lung function underwent high resolution CT and distinct emphysema sub-types were quantified using novel local histogram-based assessment of lung density. We analysed levels of MMPs and tissue inhibitors of MMPs (TIMPs) in bronchoalveolar lavage (BAL) and assessed their relationship with these emphysema sub-types.ResultsThe most prevalent emphysema subtypes in COPD subjects were mild and moderate centrilobular (CLE) emphysema, while only small amounts of severe centrilobular emphysema, paraseptal emphysema (PSE) and panlobular emphysema (PLE) were present. MMP-3, and -10 associated with all emphysema sub-types other than mild CLE, while MMP-7 and -8 had associations with moderate and severe CLE and PSE. MMP-9 also had associations with moderate CLE and paraseptal emphysema. Mild CLE occurred in substantial quantities irrespective of whether airflow obstruction was present and did not show any associations with MMPs.ConclusionMultiple MMPs are directly associated with emphysema sub-types identified by CT imaging, apart from mild CLE. This suggests that MMPs play a significant role in the tissue destruction seen in the more severe sub-types of emphysema, whereas early emphysematous change may be driven by a different mechanism.Trial registrationTrial registration number NCT01701869.


PLOS ONE | 2016

Relationships between mucosal antibodies, non-typeable haemophilus influenzae (NTHi) infection and airway inflammation in COPD

Karl J. Staples; Stephen Taylor; Steve Thomas; Stephanie Leung; Karen Cox; Thierry Pascal; Kristoffer Ostridge; Lindsay Welch; Andrew Tuck; Stuart C. Clarke; Andrew Gorringe; Tom Wilkinson

Non-typeable Haemophilus influenzae (NTHi) is a key pathogen in COPD, being associated with airway inflammation and risk of exacerbation. Why some patients are susceptible to colonisation is not understood. We hypothesised that this susceptibility may be due to a deficiency in mucosal humoral immunity. The aim of our study (NCT01701869) was to quantify the amount and specificity of antibodies against NTHi in the lungs and the associated risk of infection and inflammation in health and COPD. Phlebotomy, sputum induction and bronchoscopy were performed on 24 mild-to-moderate COPD patients and 8 age and smoking-matched controls. BAL (Bronchoalveolar lavage) total IgG1, IgG2, IgG3, IgM and IgA concentrations were significantly increased in COPD patients compared to controls. NTHi was detected in the lungs of 7 of the COPD patients (NTHi+ve—29%) and these patients had a higher median number of previous exacerbations than NTHi-ve patients as well as evidence of increased systemic inflammation. When comparing NTHi+ve versus NTHi-ve patients we observed a decrease in the amount of both total IgG1 (p = 0.0068) and NTHi-specific IgG1 (p = 0.0433) in the BAL of NTHi+ve patients, but no differences in total IgA or IgM. We observed no evidence of decreased IgG1 in the serum of NTHi+ve patients, suggesting this phenomenon is restricted to the airway. Furthermore, the NTHi+ve patients had significantly greater levels of IL-1β (p = 0.0003), in BAL than NTHi-ve COPD patients.This study indicates that the presence of NTHi is associated with reduced levels and function of IgG1 in the airway of NTHi-colonised COPD patients. This decrease in total and NTHI-specific IgG1 was associated with greater systemic and airway inflammation and a history of more frequent exacerbations and may explain the susceptibility of some COPD patients to the impacts of NTHi.


Thorax | 2018

Longitudinal profiling of the lung microbiome in the AERIS study demonstrates repeatability of bacterial and eosinophilic COPD exacerbations

David L. Mayhew; Nathalie Devos; Christophe Lambert; James R. Brown; Stuart C. Clarke; Viktoriya Kim; Michal Magid-Slav; Kristoffer Ostridge; Ruchi Patel; Ganesh M. Sathe; Daniel F Simola; Karl J. Staples; Ruby Sung; Ruth Tal-Singer; Andrew Tuck; Stephanie Van Horn; Vincent Weynants; Nicholas Williams; Jeanne-Marie Devaster; Tom Wilkinson

Background Alterations in the composition of the lung microbiome associated with adverse clinical outcomes, known as dysbiosis, have been implicated with disease severity and exacerbations in COPD. Objective To characterise longitudinal changes in the lung microbiome in the AERIS study (Acute Exacerbation and Respiratory InfectionS in COPD) and their relationship with associated COPD outcomes. Methods We surveyed 584 sputum samples from 101 patients with COPD to analyse the lung microbiome at both stable and exacerbation time points over 1 year using high-throughput sequencing of the 16S ribosomal RNA gene. We incorporated additional lung microbiology, blood markers and in-depth clinical assessments to classify COPD phenotypes. Results The stability of the lung microbiome over time was more likely to be decreased in exacerbations and within individuals with higher exacerbation frequencies. Analysis of exacerbation phenotypes using a Markov chain model revealed that bacterial and eosinophilic exacerbations were more likely to be repeated in subsequent exacerbations within a subject, whereas viral exacerbations were not more likely to be repeated. We also confirmed the association of bacterial genera, including Haemophilus and Moraxella, with disease severity, exacerbation events and bronchiectasis. Conclusions Subtypes of COPD have distinct bacterial compositions and stabilities over time. Some exacerbation subtypes have non-random probabilities of repeating those subtypes in the future. This study provides insights pertaining to the identification of bacterial targets in the lung and biomarkers to classify COPD subtypes and to determine appropriate treatments for the patient. Trial registration number Results, NCT01360398.


Respiratory Research | 2018

Relationship of CT-quantified emphysema, small airways disease and bronchial wall dimensions with physiological, inflammatory and infective measures in COPD

Kristoffer Ostridge; Nicholas Williams; Viktoriya Kim; Stephen Harden; Simon Bourne; Stuart C. Clarke; Emmanuel Aris; Sonia Mesia-Vela; Jeanne-Marie Devaster; Andrew Tuck; Anthony P. Williams; Stephen A. Wootton; Karl J. Staples; Tom Wilkinson

BackgroundCOPD is a complex, heterogeneous disease characterised by progressive development of airflow limitation. Spirometry provides little information about key aspects of pathology and is poorly related to clinical outcome, so other tools are required to investigate the disease. We sought to explore the relationships between quantitative CT analysis with functional, inflammatory and infective assessments of disease to identify the utility of imaging to stratify disease to better predict outcomes and disease response.MethodsPatients from the AERIS study with moderate-very severe COPD underwent HRCT, with image analysis determining the quantity of emphysema (%LAA<− 950), small airways disease (E/I MLD) and bronchial wall thickening (Pi10). At enrolment subjects underwent lung function testing, six-minute walk testing (6MWT), blood sampling for inflammatory markers and sputum sampling for white cell differential and microbiological culture and PCR.Results122 subjects were included in this analysis. Emphysema and small airways disease had independent associations with airflow obstruction (β = − 0.34, p < 0.001 and β = − 0.56, p < 0.001). %LAA<− 950 had independent associations with gas transfer (β = − 0.37, p < 0.001) and E/I MLD with RV/TLC (β = 0.30, p =0.003). The distance walked during the 6MWT was not associated with CT parameters, but exertional desaturation was independently associated with emphysema (β = 0.73, p < 0.001). Pi10 did not show any independent associations with lung function or functional parameters.No CT parameters had any associations with sputum inflammatory cells. Greater emphysema was associated with lower levels of systemic inflammation (CRP β = − 0.34, p < 0.001 and fibrinogen β = − 0.28, p =0.003). There was no significant difference in any of the CT parameters between subjects where potentially pathogenic bacteria were detected in sputum and those where it was not.ConclusionsThis study provides further validation for the use of quantitative CT measures of emphysema and small airways disease in COPD as they showed strong associations with pulmonary physiology and functional status. In contrast to this quantitative CT measures showed few convincing associations with biological measures of disease, suggesting it is not an effective tool at measuring disease activity.


Respiratory Medicine | 2018

Systematic review of evidence for relationships between physiological and CT indices of small airways and clinical outcomes in COPD

Kerry Gove; Tom Wilkinson; Sandy Jack; Kristoffer Ostridge; Bruce Thompson; Joy Conway

BACKGROUND Small airways disease (SAD) is considered pivotal in the pathology of COPD. There are numerous publications describing physiological and Computed Tomography (CT) imaging markers to detect SAD. However, there is no agreed gold standard and limited understanding of the clinical associations of these measures to disease outcomes. METHODS We conducted a systematic review using Embase, Medline and Pubmed to explore the relationship between physiological and CT SAD measures in COPD (GOLD Stages 1-4). Furthermore, evidence linking these physiological measures with defined clinical outcomes such as health status, functional assessment and exacerbation frequency were summarised. RESULTS The search yielded 1160 abstracts of which 19 met the search criteria. Six studies examined physiological and CT measures while 13 publications identified physiological measures and clinical outcomes. Strong correlations were seen between CT and physiological measures of SAD. Varying associations between physiological measures and defined clinical outcomes were noted. CONCLUSIONS Physiological and CT measures of SAD correlate and infer similar information. Physiological measures of SAD may offer valuable insight into clinical expression of the disease. A consensus on the standardisation and recommendation of tests to measure SAD is needed in order to better understand any clinical benefits of targeted drug therapy to the small airways.


Frontiers in Immunology | 2018

Human CD49a+ Lung Natural Killer Cell Cytotoxicity in Response to Influenza A Virus

Grace Elizabeth Cooper; Kristoffer Ostridge; Salim I. Khakoo; Tom Wilkinson; Karl J. Staples

Influenza A virus (IAV) is a major global public health burden due to its routine evasion of immunization strategies. Natural killer (NK) cells are innate cytotoxic cells with important antiviral activity in the human body, yet the function of these cells in the control of IAV infection is unclear. The aim of this study was to determine the role of lung NK cell cytotoxic responses to IAV. Human lung explants were infected ex vivo with IAV, and lung NK cell activation was analyzed by flow cytometry. Cytotoxic responses of NK cell subsets against IAV-infected macrophages were measured by flow cytometry and ELISA. Despite reports of hypofunctionality in the pulmonary environment, human lung-associated NK cells responded rapidly to ex vivo IAV infection, with upregulation of surface CD107a 24 h post-infection. The lung NK cell phenotype is similar in maturity and differentiation to NK cells of the peripheral blood but a unique CD56brightCD49a+CD103+CD69+ NK cell population was identified in the lung, indicating NK cell residency within this organ. In response to ex vivo IAV infection a greater proportion of resident CD56brightCD49a+ NK cells expressed surface CD107a compared with CD56brightCD49a− NK cells, suggesting a hyperfunctional NK cell population may be present within human lung tissue and could be the result of innate immunological training. Furthermore, NK cells provided significant antiviral, cytotoxic activity following contact with influenza-infected cells, including the production and release of IFN-γ and granzyme-B resulting in macrophage cell death. These results suggest that a resident, trained NK cell population are present in the human lung and may provide early and important control of viral infection. A greater understanding of this resident mucosal population may provide further insight into the role of these cells in controlling viral infection and generating appropriate adaptive immunity to IAV.

Collaboration


Dive into the Kristoffer Ostridge's collaboration.

Top Co-Authors

Avatar

Tom Wilkinson

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Karl J. Staples

Southampton General Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon Bourne

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Viktoriya Kim

Southampton General Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen Harden

Southampton General Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Tuck

University of Southampton

View shared research outputs
Researchain Logo
Decentralizing Knowledge