Kristopher E. Wise
Langley Research Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kristopher E. Wise.
Composites Science and Technology | 2003
Zoubeida Ounaies; Cheol Park; Kristopher E. Wise; Joycelyn S. Harrison
Electrical properties of single wall carbon nanotube (SWNT) reinforced polyimide composites were investigated as a function of SWNT concentration. AC and DC conductivities were measured, and the frequency behavior of the specific admittance was investigated. The experimental conductivity was found to obey a percolation-like power law with a relatively low percolation threshold. The current-voltage measurement results exhibited a non-ohmic behavior, indicating a quantum tunneling conduction mechanism. Analytical modeling and numerical simulation using high aspect ratio, rigid, spherocylinders as models for the SWNT were carried out to aid in understanding these results. The predictions were in good agreement with the experimental results. Published by Elsevier Ltd.
Journal of Physical Chemistry A | 2015
Benjamin D. Jensen; Kristopher E. Wise; Gregory M. Odegard
In light of the enduring interest in using nanostructured carbon materials as reinforcing elements in composite materials, there is a significant need for a reliable computational tool capable to predict the mechanical properties, both elastic properties and properties at the point of fracture, in large-scale atomistic simulations. A revised version of the ReaxFF reactive force field parametrization for carbon, ReaxFFC-2013, was recently published and is notable because of the inclusion of density functional theory (DFT)-derived mechanical data for diamond and graphite in the fitting set. The purpose of the present work is to assess the accuracy of this new force field for predicting the mechanical properties for several allotropes of carbon, both in the elastic regime and during fracture. The initial discussion focuses on the performance of ReaxFFC-2013 for diamond and graphene, the two carbon forms for which mechanical properties were included in the parametrization data set. After it is established that simulations conducted with the new force field yield results that agree well with DFT and experimental data for most properties of interest, its transferability to amorphous carbon and carbon nanotubes is explored. ReaxFFC-2013 is found to produce results that, for the most part, compare favorably with available experimental data for single and multiwalled nanotubes and for amorphous carbon models prepared over a range of densities. Although there is opportunity for improvement in some predicted properties, the ReaxFFC-2013 parametrization is shown to generally perform well for each form of carbon and to compare favorably with DFT and experimental data.
ACS Applied Materials & Interfaces | 2013
Jae-Woo Kim; Jennifer Carpena-Núñez; Kristopher E. Wise; John W. Connell; Yi Lin; Russell A. Wincheski
Practical approaches are needed to take advantage of the nanometer-scale mechanical properties of carbon nanotubes (CNTs) at the macroscopic scale. This study was conducted to elucidate the salient factors that can maximize the mechanical properties of nanocomposites fabricated from commercially available CNT sheets. The CNT sheets were modified by stretching to improve CNT alignment and in situ polymerization using polyaniline (PANI), a π-conjugated conductive polymer, as a binder. The resulting CNT nanocomposites were subsequently postprocessed by hot pressing and/or high temperature treatment to carbonize the PANI as a means to improve mechanical properties. The PANI/CNT nanocomposites demonstrated significant improvement in mechanical properties compared to pristine CNT sheets. The highest specific tensile strength of PANI/stretched CNT nanocomposite was 484 MPa/(g/cm3), which was achieved in a sample with ∼42 wt % of PANI. This specimen was fabricated by in situ polymerization followed by hot pressing. The highest specific Youngs modulus of 17.1 GPa/(g/cm3) was measured on a sample that was hot-pressed and carbonized. In addition, the highest DC-electrical conductivity of 621 S/cm was obtained on a sample prepared by in situ polymerization of PANI on a stretched CNT sheet.
Journal of Computational Chemistry | 2015
Benjamin D. Jensen; Kristopher E. Wise; Gregory M. Odegard
As the sophistication of reactive force fields for molecular modeling continues to increase, their use and applicability has also expanded, sometimes beyond the scope of their original development. Reax Force Field (ReaxFF), for example, was originally developed to model chemical reactions, but is a promising candidate for modeling fracture because of its ability to treat covalent bond cleavage. Performing reliable simulations of a complex process like fracture, however, requires an understanding of the effects that various modeling parameters have on the behavior of the system. This work assesses the effects of time step size, thermostat algorithm and coupling coefficient, and strain rate on the fracture behavior of three carbon‐based materials: graphene, diamond, and a carbon nanotube. It is determined that the simulated stress‐strain behavior is relatively independent of the thermostat algorithm, so long as coupling coefficients are kept above a certain threshold. Likewise, the stress‐strain response of the materials was also independent of the strain rate, if it is kept below a maximum strain rate. Finally, the mechanical properties of the materials predicted by the Chenoweth C/H/O parameterization for ReaxFF are compared with literature values. Some deficiencies in the Chenoweth C/H/O parameterization for predicting mechanical properties of carbon materials are observed.
ACS Nano | 2015
Jin Ho Kang; Godfrey Sauti; Cheol Park; Vesselin Yamakov; Kristopher E. Wise; Sharon E. Lowther; Catharine C. Fay; Sheila A. Thibeault; Robert G. Bryant
Space exploration missions require sensors and devices capable of stable operation in harsh environments such as those that include high thermal fluctuation, atomic oxygen, and high-energy ionizing radiation. However, conventional or state-of-the-art electroactive materials like lead zirconate titanate, poly(vinylidene fluoride), and carbon nanotube (CNT)-doped polyimides have limitations on use in those extreme applications. Theoretical studies have shown that boron nitride nanotubes (BNNTs) have strength-to-weight ratios comparable to those of CNTs, excellent high-temperature stability (to 800 °C in air), large electroactive characteristics, and excellent neutron radiation shielding capability. In this study, we demonstrated the experimental electroactive characteristics of BNNTs in novel multifunctional electroactive nanocomposites. Upon application of an external electric field, the 2 wt % BNNT/polyimide composite was found to exhibit electroactive strain composed of a superposition of linear piezoelectric and nonlinear electrostrictive components. When the BNNTs were aligned by stretching the 2 wt % BNNT/polyimide composite, electroactive characteristics increased by about 460% compared to the nonstretched sample. An all-nanotube actuator consisting of a BNNT buckypaper layer between two single-walled carbon nanotube buckypaper electrode layers was found to have much larger electroactive properties. The additional neutron radiation shielding properties and ultraviolet/visible/near-infrared optical properties of the BNNT composites make them excellent candidates for use in the extreme environments of space missions.
ACS Applied Materials & Interfaces | 2014
Jae-Woo Kim; Godfrey Sauti; Joseph G. Smith; Russell A. Wincheski; Roberto J. Cano; John W. Connell; Kristopher E. Wise
Thermoset/carbon nanotube (CNT) sheet nanocomposites were successfully fabricated by resistive heating assisted infiltration and cure (RHAIC) of the polymer matrix resin. Resistive heating takes advantage of the electrical and thermal conductivity of CNTs to rapidly and uniformly introduce heat into the CNT sheet. Heating the CNT sheet reduces the viscosity of the polymer resin due to localized temperature rise in close proximity to the resin, which enhances resin flow, penetration, and wetting of the CNT reinforcement. Once the resin infusion process is complete, the applied power is increased to raise the temperature of the CNT sheet, which rapidly cures the polymer matrix. Tensile tests were used to evaluate the mechanical properties of the processed thermoset/CNT sheet nanocomposites. The improved wetting and adhesion of the polymer resin to the CNT reinforcement yield significant improvement of thermoset/CNT nanocomposite mechanical properties. The highest specific tensile strength of bismaleimide(BMI)/CNT sheet nanocomposites was obtained to date was 684 MPa/(g/cm(3)), using 4 V (2 A) for resin infiltration, followed by precure at 10 V (6 A) for 10 min and post curing at 240 °C for 6 h in an oven. The highest specific Youngs modulus of BMI/CNT sheet nanocomposite was 71 GPa/(g/cm(3)) using resistive heating infiltration at 8.3 V (4.7 A) for 3 min followed by resistive heating cure at 12.5 V (7 A) for 30 min. In both cases, the CNT sheets were stretched and held in tension to prevent relaxation of the aligned CNTs during the course of RHAIC.
Journal of Chemical Theory and Computation | 2012
Benjamin D. Jensen; Ananyo Bandyopadhyay; Kristopher E. Wise; Gregory M. Odegard
The development of innovative carbon-based materials can be greatly facilitated by molecular modeling techniques. Although the Reax Force Field (ReaxFF) can be used to simulate the chemical behavior of carbon-based systems, the simulation settings required for accurate predictions have not been fully explored. Using the ReaxFF, molecular dynamics (MD) simulations are used to simulate the chemical behavior of pure carbon and hydrocarbon reactive gases that are involved in the formation of carbon structures such as graphite, buckyballs, amorphous carbon, and carbon nanotubes. It is determined that the maximum simulation time step that can be used in MD simulations with the ReaxFF is dependent on the simulated temperature and selected parameter set, as are the predicted reaction rates. It is also determined that different carbon-based reactive gases react at different rates, and that the predicted equilibrium structures are generally the same for the different ReaxFF parameter sets, except in the case of the predicted formation of large graphitic structures with the Chenoweth parameter set under specific conditions.
Proceedings of SPIE | 2014
Amanda L. Tiano; Cheol Park; Joseph W. Lee; Hoa H. Luong; Luke Gibbons; Sang-Hyon Chu; Samantha I. Applin; Peter A. Gnoffo; Sharon E. Lowther; Hyun Jung Kim; Paul M. Danehy; Jennifer A. Inman; Stephen B. Jones; Jin Ho Kang; Godfrey Sauti; Sheila A. Thibeault; Vesselin Yamakov; Kristopher E. Wise; Ji Su; Catharine C. Fay
Scientists have predicted that carbon’s immediate neighbors on the periodic chart, boron and nitrogen, may also form perfect nanotubes, since the advent of carbon nanotubes (CNTs) in 1991. First proposed then synthesized by researchers at UC Berkeley in the mid 1990’s, the boron nitride nanotube (BNNT) has proven very difficult to make until now. Herein we provide an update on a catalyst-free method for synthesizing highly crystalline, small diameter BNNTs with a high aspect ratio using a high power laser under a high pressure and high temperature environment first discovered jointly by NASA/NIA/JSA. Progress in purification methods, dispersion studies, BNNT mat and composite formation, and modeling and diagnostics will also be presented. The white BNNTs offer extraordinary properties including neutron radiation shielding, piezoelectricity, thermal oxidative stability (> 800°C in air), mechanical strength, and toughness. The characteristics of the novel BNNTs and BNNT polymer composites and their potential applications are discussed.
Modelling and Simulation in Materials Science and Engineering | 2016
Benjamin D. Jensen; Kristopher E. Wise; Gregory M. Odegard
The mechanical properties of carbon nanotube (CNT) fiber composites are steadily approaching those of traditional carbon fiber composites. This work is focused on establishing a plausible upper bound on these properties by modeling the elastic deformations, yield, and fracture of idealized CNT composites using reactive molecular dynamics. Amorphous carbon (AC) was used for the matrix material because of its structural simplicity and physical compatibility with the CNT fillers. Three different arrangements of CNTs in the simulation cell were investigated: a single-wall nanotube (SWNT) array, a multi-wall nanotube (MWNT) array, and a SWNT bundle system. The SWNT and MWNT array systems are clearly idealizations, but the SWNT bundle system is a step closer to real systems in which individual tubes aggregate into large assemblies. Chemical crosslinking was modeled by adding bonds between the CNTs and AC to explore the balance between weakening the CNTs and improving fiber-matrix load transfer. The simulation results reported here clarify the impact of CNT dispersion, the extent of crosslinking, and CNT-templated matrix structuring on the mechanical properties of CNT composites.
MRS Proceedings | 2004
David J. Styers-Barnett; Steven P. Ellison; Cheol Park; Kristopher E. Wise; John M. Papanikolas
Wavelength-resolved femtosecond transient absorption spectroscopy is used to follow the electronic dynamics of single-walled carbon nanotubes in polymers following visible and near IR photoexcitation. Electron-hole ( e-h ) pairs give rise to sharp features in the transient spectra that decay in amplitude and exhibit rapid spectral shifts. The decay reflects ( e-h ) recombination on both short (1.3 ps) and long (35 ps) time scales. Transient spectra also exhibit a broad photobleach at early times that arises from the cooling of a hot electron gas created via excitation at the red edge of a π-plasmon band.