Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristopher M. Kahlig is active.

Publication


Featured researches published by Kristopher M. Kahlig.


Journal of Neurochemistry | 2002

PI 3-kinase regulation of dopamine uptake

Lucia Carvelli; José A. Morón; Kristopher M. Kahlig; Jasmine V. Ferrer; Namita Sen; James D. Lechleiter; L. M. Fredrik Leeb-Lundberg; Gerald Merrill; Eileen M. Lafer; Lisa M. Ballou; Toni S. Shippenberg; Jonathan A. Javitch; Richard Z. Lin; Aurelio Galli

The magnitude and duration of dopamine (DA) signaling is defined by the amount of vesicular release, DA receptor sensitivity, and the efficiency of DA clearance, which is largely determined by the DA transporter (DAT). DAT uptake capacity is determined by the number of functional transporters on the cell surface as well as by their turnover rate. Here we show that inhibition of phosphatidylinositol (PI) 3‐kinase with LY294002 induces internalization of the human DAT (hDAT), thereby reducing transport capacity. Acute treatment with LY294002 reduced the maximal rate of [3H]DA uptake in rat striatal synaptosomes and in human embryonic kidney (HEK) 293 cells stably expressing the hDAT (hDAT cells). In addition, LY294002 caused a significant redistribution of the hDAT from the plasma membrane to the cytosol. Conversely, insulin, which activates PI 3‐kinase, increased [3H]DA uptake and blocked the amphetamine‐induced hDAT intracellular accumulation, as did transient expression of constitutively active PI 3‐kinase. The LY294002‐induced reduction in [3H]DA uptake and hDAT cell surface expression was inhibited by expression of a dominant negative mutant of dynamin I, indicating that dynamin‐dependent trafficking can modulate transport capacity. These data implicate DAT trafficking in the hormonal regulation of dopaminergic signaling, and suggest that a state of chronic hypoinsulinemia, such as in diabetes, may alter synaptic DA signaling by reducing the available cell surface DATs.


Journal of the American College of Cardiology | 2014

Mutations in SCN10A Are Responsible for a Large Fraction of Cases of Brugada Syndrome

Dan Hu; Hector Barajas-Martinez; Ryan Pfeiffer; Fabio Dezi; Jenna Pfeiffer; Tapan Buch; Matthew J. Betzenhauser; Luiz Belardinelli; Kristopher M. Kahlig; Sridharan Rajamani; Harry J. Deantonio; Robert J. Myerburg; Hiroyuki Ito; Pramod Deshmukh; Mark Marieb; Gi Byoung Nam; Atul Bhatia; Can Hasdemir; Michel Haïssaguerre; Christian Veltmann; Rainer Schimpf; Martin Borggrefe; Sami Viskin; Charles Antzelevitch

BACKGROUND BrS is an inherited sudden cardiac death syndrome. Less than 35% of BrS probands have genetically identified pathogenic variants. Recent evidence has implicated SCN10A, a neuronal sodium channel gene encoding Nav1.8, in the electrical function of the heart. OBJECTIVES The purpose of this study was to test the hypothesis that SCN10A variants contribute to the development of Brugada syndrome (BrS). METHODS Clinical analysis and direct sequencing of BrS susceptibility genes were performed for 150 probands and family members as well as >200 healthy controls. Expression and coimmunoprecipitation studies were performed to functionally characterize the putative pathogenic mutations. RESULTS We identified 17 SCN10A mutations in 25 probands (20 male and 5 female); 23 of the 25 probands (92.0%) displayed overlapping phenotypes. SCN10A mutations were found in 16.7% of BrS probands, approaching our yield for SCN5A mutations (20.1%). Patients with BrS who had SCN10A mutations were more symptomatic and displayed significantly longer PR and QRS intervals compared with SCN10A-negative BrS probands. The majority of mutations localized to the transmembrane-spanning regions. Heterologous coexpression of wild-type (WT) SCN10A with WT-SCN5A in HEK cells caused a near doubling of sodium channel current compared with WT-SCN5A alone. In contrast, coexpression of SCN10A mutants (R14L and R1268Q) with WT-SCN5A caused a 79.4% and 84.4% reduction in sodium channel current, respectively. The coimmunoprecipitation studies provided evidence for the coassociation of Nav1.8 and Nav1.5 in the plasma membrane. CONCLUSIONS Our study identified SCN10A as a major susceptibility gene for BrS, thus greatly enhancing our ability to genotype and risk stratify probands and family members.


Journal of Biological Chemistry | 2004

Amphetamine Regulation of Dopamine Transport COMBINED MEASUREMENTS OF TRANSPORTER CURRENTS AND TRANSPORTER IMAGING SUPPORT THE ENDOCYTOSIS OF AN ACTIVE CARRIER

Kristopher M. Kahlig; Jonathan A. Javitch; Aurelio Galli

Dopaminergic neurotransmission is fine-tuned by the rate of removal of dopamine (DA) from the extracellular space via the Na+/Cl--dependent DA transporter (DAT). DAT is a target of psychostimulants such as amphetamine (AMPH) and cocaine. Previously, we reported that AMPH redistributes the human DAT away from the cell surface. This process was associated with a reduction in transport capacity. This loss of transport capacity may result either from a modification of the function of DAT that is independent of its cell surface redistribution and/or from a reduction in the number of active transporters at the plasma membrane that results from DAT trafficking. To discriminate between these possibilities, we stably transfected HEK-293 cells with a yellow fluorescent protein (YFP)-tagged human DAT (hDAT cells). In hDAT cells, acute exposure to AMPH induced a time-dependent loss of hDAT activity. By coupling confocal imaging with patch-clamp whole-cell recordings, we have demonstrated for the first time that the loss of AMPH-induced hDAT activity temporally parallels the accumulation of intracellular hDAT. In addition, presteady-state current analysis revealed a cocaine-sensitive, voltage-dependent capacitance current that correlated with the level of transporter membrane expression and in turn served to monitor the AMPH-induced trafficking of hDAT. We found that the decrease in hDAT cell surface expression induced by AMPH was not paralleled by changes in the ability of the single transporter to carry charges. Quasi-stationary noise analysis of the AMPH-induced hDAT currents revealed that the unitary transporter current remained unaltered during the loss of hDAT membrane expression. Taken together, these data strongly suggest that the AMPH-induced reduction of hDAT transport capacity results from the removal of active hDAT from the plasma membrane.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Divergent sodium channel defects in familial hemiplegic migraine

Kristopher M. Kahlig; Thomas H. Rhodes; Michael Pusch; Tobias Freilinger; José Pereira-Monteiro; Michel D. Ferrari; Arn M. J. M. van den Maagdenberg; Martin Dichgans; Alfred L. George

Familial hemiplegic migraine type 3 (FHM3) is a severe autosomal dominant migraine disorder caused by mutations in the voltage-gated sodium channel NaV1.1 encoded by SCN1A. We determined the functional consequences of three mutations linked to FHM3 (L263V, Q1489K, and L1649Q) in an effort to identify molecular defects that underlie this inherited migraine disorder. Only L263V and Q1489K generated quantifiable sodium currents when coexpressed in tsA201 cells with the human β1 and β2 accessory subunits. The third mutant, L1649Q, failed to generate measurable whole-cell current because of markedly reduced cell surface expression. Compared to WT-NaV1.1, Q1489K exhibited increased persistent current but also enhanced entry into slow inactivation as well as delayed recovery from fast and slow inactivation, thus resulting in a predominantly loss-of-function phenotype further demonstrated by a greater loss of channel availability during repetitive stimulation. In contrast, L263V exhibited gain-of-function features, including delayed entry into, as well as accelerated recovery from, fast inactivation; depolarizing shifts in the steady-state voltage dependence of fast and slow inactivation; increased persistent current; and delayed entry into slow inactivation. Notably, the two mutations (Q1489K and L1649Q) that exhibited partial or complete loss of function are linked to typical FHM, whereas the gain-of-function mutation L263V occurred in a family having both FHM and a high incidence of generalized epilepsy. We infer from these data that a complex spectrum of NaV1.1 defects can cause FHM3. Our results also emphasize the complex relationship between migraine and epilepsy and provide further evidence that both disorders may share common molecular mechanisms.


Epilepsia | 2008

Impaired NaV1.2 Function and Reduced Cell Surface Expression in Benign Familial Neonatal-Infantile Seizures

Sunita N. Misra; Kristopher M. Kahlig; Alfred L. George

Purpose: Mutations in SCN2A, the gene encoding the brain voltage‐gated sodium channel α‐subunit Na V 1.2, are associated with inherited epilepsies including benign familial neonatal‐infantile seizures (BFNIS). Functional characterization of three BFNIS mutations was performed to identify defects in channel function that underlie this disease.


Molecular Pharmacology | 2006

Regulation of dopamine transporter trafficking by intracellular amphetamine

Kristopher M. Kahlig; Brandon J. Lute; Yuqiang Wei; Claus J. Loland; Ulrik Gether; Jonathan A. Javitch; Aurelio Galli

The dopamine (DA) transporter (DAT) mediates the removal of released DA. DAT is the major molecular target responsible for the rewarding properties and abuse potential of the psychostimulant amphetamine (AMPH). AMPH has been shown to reduce the number of DATs at the cell surface, and this AMPH-induced cell surface DAT redistribution may result in long-lasting changes in DA homeostasis. The molecular mechanism by which AMPH induces trafficking is not clear. Because AMPH is a substrate, we do not know whether extracellular AMPH stimulates trafficking through its interaction with DAT and subsequent alteration in DAT function, thereby triggering intracellular signaling or whether AMPH must be transported and then act intracellularly. In agreement with our previous studies, extracellular AMPH caused cytosolic redistribution of the wild-type human DAT (WT-hDAT). However, AMPH did not induce cytosolic redistribution in an uptake-impaired hDAT (Y335A-hDAT) that still binds AMPH. The divalent cation zinc (Zn2+) inhibits WT-hDAT activity, but it restores Y335A-hDAT uptake. Coadministration of Zn2+ and AMPH consistently reduced WT-hDAT trafficking but stimulated cytosolic redistribution of Y335A-hDAT. Furthermore, direct intracellular application of AMPH, via a whole-cell patch pipette, stimulated the trafficking of Y335A-hDAT. Taken together, these data suggest that the DAT transport cycle is not required for AMPH-induced down-regulation and that an increase of intracellular AMPH is an essential component of DAT redistribution.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Multiplexed transposon-mediated stable gene transfer in human cells

Kristopher M. Kahlig; Sai Saridey; Aparna Kaja; Melissa A. Daniels; Alfred L. George; Matthew H. Wilson

Generation of cultured human cells stably expressing one or more recombinant gene sequences is a widely used approach in biomedical research, biotechnology, and drug development. Conventional methods are not efficient and have severe limitations especially when engineering cells to coexpress multiple transgenes or multiprotein complexes. In this report, we harnessed the highly efficient, nonviral, and plasmid-based piggyBac transposon system to enable concurrent genomic integration of multiple independent transposons harboring distinct protein-coding DNA sequences. Flow cytometry of cell clones derived from a single multiplexed transfection demonstrated approximately 60% (three transposons) or approximately 30% (four transposons) stable coexpression of all delivered transgenes with selection for a single marker transposon. We validated multiplexed piggyBac transposon delivery by coexpressing large transgenes encoding a multisubunit neuronal voltage-gated sodium channel (SCN1A) containing a pore-forming subunit and two accessory subunits while using two additional genes for selection. Previously unobtainable robust sodium current was demonstrated through 38 passages, suitable for use on an automated high-throughput electrophysiology platform. Cotransfection of three large (up to 10.8 kb) piggyBac transposons generated a heterozygous SCN1A stable cell line expressing two separate alleles of the pore-forming subunit and two accessory subunits (total of four sodium channel subunits) with robust functional expression. We conclude that the piggyBac transposon system can be used to perform multiplexed stable gene transfer in cultured human cells, and this technology may be valuable for applications requiring concurrent expression of multiprotein complexes.


Epilepsia | 2006

Nonfunctional SCN1A Is Common in Severe Myoclonic Epilepsy of Infancy

Iori Ohmori; Kristopher M. Kahlig; Thomas H. Rhodes; Dao W. Wang; Alfred L. George

Summary:  Purpose: Mutations in SCN1A, encoding the human NaV1.1 neuronal voltage‐gated sodium channel, cause the syndrome of severe myoclonic epilepsy of infancy (SMEI). Most SMEI‐associated mutations are predicted to truncate the SCN1A protein, likely causing a loss of sodium channel function. However, many missense or in‐frame deletion SCN1A mutations have also been reported in this disorder, but their functional impact is largely unknown. Here we report the functional characterization of eight SCN1A mutations (G177E, I227S, R393H, Y426N, H939Q, C959R, delF1289, and T1909I) previously identified in SMEI probands.


Epilepsia | 2011

SCN1A splice variants exhibit divergent sensitivity to commonly used antiepileptic drugs.

Christopher H. Thompson; Kristopher M. Kahlig; Alfred L. George

Purpose:  A common genetic variant (rs3812718) in a splice donor consensus sequence within the neuronal sodium channel gene SCN1A (encoding NaV1.1) modulates the proportion of transcripts incorporating either the canonical (5A) or alternative (5N) exon 5. A pharmacogenetic association has been reported whereby increased expression of exon 5N containing NaV1.1 transcripts correlated with lower required doses of phenytoin in epileptics. We tested the hypothesis that SCN1A alternative splicing affects the pharmacology of NaV1.1 channels.


Frontiers in Pharmacology | 2010

Propranolol blocks cardiac and neuronal voltage-gated sodium channels.

Dao W. Wang; Akshitkumar M. Mistry; Kristopher M. Kahlig; Jennifer A. Kearney; Jizhou Xiang; Alfred L. George

Propranolol is a widely used, non-selective β-adrenergic receptor antagonist with proven efficacy in treating cardiovascular disorders and in the prevention of migraine headaches. At plasma concentrations exceeding those required for β-adrenergic receptor inhibition, propranolol also exhibits anti-arrhythmic (“membrane stabilizing”) effects that are not fully explained by β-blockade. Previous in vitro studies suggested that propranolol may have local anesthetic effects. We directly tested the effects of propranolol on heterologously expressed recombinant human cardiac (NaV1.5) and brain (NaV1.1, NaV1.2, NaV1.3) sodium channels using whole-cell patch-clamp recording. We found that block was not stereospecific as we observed approximately equal IC50 values for tonic and use-dependent block by R-(+) and S-(−) propranolol (tonic block: R: 21.4 μM vs S: 23.6 μM; use-dependent block: R: 2.7 μM vs S: 2.6 μM). Metoprolol and nadolol did not block NaV1.5 indicating that sodium channel block is not a class effect of β-blockers. The biophysical effects of R-(+)-propranolol on NaV1.5 and NaV1.1 resembled that of the prototypical local anesthetic lidocaine including the requirement for a critical phenylalanine residue (F1760 in NaV1.5) in the domain 4 S6 segment. Finally, we observed that brain sodium channels exhibited less sensitivity to R-(+)-propranolol than NaV1.5 channels. Our findings establish sodium channels as targets for propranolol and may help explain some beneficial effects of the drug in treating cardiac arrhythmias, and may explain certain adverse central nervous system effects.

Collaboration


Dive into the Kristopher M. Kahlig's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luiz Belardinelli

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sridharan Rajamani

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge