Kristopher R. Ward
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kristopher R. Ward.
Nano Research | 2013
Christopher C. M. Neumann; Eduardo Laborda; Kristopher R. Ward; Richard G. Compton
The electrocatalytic activity for oxygen reduction reaction (ORR) at neutral pH of citrate-capped silver nanoparticles (diameter = 18 nm) supported on glassy carbon (GC) is investigated voltammetrically. Novelly, the modification of the substrate by nanoparticles sticking to form a random nanoparticle array and the voltammetric experiments are carried out simultaneously by immersion of the GC electrode in an air-saturated 0.1 M NaClO4 solution (pH = 5.8) containing chemically-synthesized nanoparticles.The experimental voltammograms of the resulting nanoparticle array are simulated with homemade programs according to the two-proton, two-electron reduction of oxygen to hydrogen peroxide where the first electron transfer is rate determining. In the case of silver electrodes, the hydrogen peroxide generated is partially further reduced to water via heterogeneous decomposition.Comparison of the results obtained on a silver macroelectrode and silver nanoparticles indicates that, for the silver nanoparticles and particle coverages (0.035%–0.457%) employed in this study, the ORR electrode kinetics is slower and the production of hydrogen peroxide larger on the glassy carbon-supported nanoparticles than on bulk silver.
Small | 2013
Ying Wang; Kristopher R. Ward; Eduardo Laborda; Chris Salter; Alison Crossley; Robert M. J. Jacobs; Richard G. Compton
The investigation of electrocatalytic nanoeffects is tackled via joint electrochemical measurements and computational simulations. The cyclic voltammetry of electrodes modified with metal nanoparticles is modeled considering the kinetics of the electrochemical process on the bulk materials of the different regions of the electrode, that is, the substrate (glassy carbon) and the nanoparticles (gold). Comparison of experimental and theoretical results enables the detection of changes in the electrode kinetics at the nanoscale due to structural and/or electronic effects. This approach is applied to the experimental assessment of electrocatalytic effects by gold nanoparticles (Au NPs) in the electrooxidation of nitrite and L-ascorbate. Glassy carbon electrode is modified with Au NPs via seed-mediated growth method. Divergence between the kinetics of these processes on gold macroelectrodes and gold nanoparticles is examined. Whereas claimed catalytic effects are not observed in the electrooxidation of nitrite, electrocatalytic nanoeffects are verified in the case of L-ascorbate. This is probably due to that the electron transfer process follows an adsorptive mechanism. The combination of simulation with experiments is commended as a general strategy of authentification, or not, of nanoelectrocatalytic effects.
Physical Chemistry Chemical Physics | 2014
Ying Wang; Eduardo Laborda; Blake J. Plowman; Kristopher R. Ward; Robert G. Palgrave; Christine Damm; Richard G. Compton
Citrate-capped gold nanoparticles (AuNPs) of 5 nm in diameter are synthesized via wet chemistry and deposited on a glassy carbon electrode through electrophoresis. The kinetics of the oxygen reduction reaction (ORR) on the modified electrode is determined quantitatively in oxygen-saturated 0.5 M sulphuric acid solution by modelling the cathode as an array of interactive nanoelectrodes. Quantitative analysis of the cyclic voltammetry shows that no apparent ORR electrocatalysis takes place, the kinetics on AuNPs being effectively the same as on bulk gold. Contrasting with the above, a strong ORR catalysis is found when Pb(2+) is added to the oxygen saturated solution or when the modified electrode is cycled in lead alkaline solution such that lead dioxide is repeatedly electrodeposited and stripped off on the nanoparticles. In both cases, the underpotential deposition of lead on the gold nanoparticles is found to be related to the catalysis.
Physical Chemistry Chemical Physics | 2013
Sven Ernst; Kristopher R. Ward; Sarah E. Norman; Christopher Hardacre; Richard G. Compton
Radical anions of 1-bromo-4-nitrobenzene (p-BrC6H4NO2) are shown to be reactive in the room temperature ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, ([C4mPyrr][NTf2]), by means of voltammetric measurements. In particular, they are shown to react via a DISP type mechanism such that the electrolysis of p-BrC6H4NO2 occurs consuming between one and two electrons per reactant molecule, leading to the formation of the nitrobenzene radical anion and bromide ions. This behaviour is a stark contrast to that in conventional non-aqueous solvents such as acetonitrile, dimethyl sulfoxide or N,N-dimethylformamide, which suggests that the ionic solvent promotes the reactivity of the radical anion, probably via stabilisation of the charged products.
Analyst | 2013
Linhongjia Xiong; Denise Lowinsohn; Kristopher R. Ward; Richard G. Compton
We report a simple and facile methodology for constructing gold macrodisc and platinum microband electrodes for use in room temperature ionic liquids (RTILs). To validate the use of gold macrodisc electrodes, the voltammetry of Ru(NH3)6(3+) was studied in 0.1 M aqueous KCl. The Randles-Ševčík equation was used to calculate the diffusion coefficient, giving excellent agreement with literature values, suggesting that the gold macrodisc electrode is capable of performing quantitative electroanalysis in aqueous media. Gold macrodisc electrodes were used to study oxidation of ferrocene in N-butyl-N-methylpyrrolidinium bis(fluoromethylsulfonyl)imide ([C4mpyrr][NTf2]) using cyclic voltammetry. The diffusion coefficient of ferrocene, (2.43 ± 0.07) × 10(-11) m(2) s(-1), was obtained. This value is very close to the literature value, indicating good performance of gold electrodes in RTILs. Platinum microband electrodes were tested in 1-propyl-3-methylimidazolium bis-trifluoromethylsulfonylimide ([Pmim][NTf2]) containing decamethylferrocene. Diffusion coefficients and electron transfer rates were obtained by fitting relevant simulations to the experimental data. For comparison, analogous experiments and analyses were performed on a commercial platinum microdisc, where the results obtained from both microdisc and microband agree well, further suggesting that the platinum microband electrode is suitable to be used in RTILs. Finally, gold macrodisc and platinum microband electrodes were used for oxygen detection. Gold macrodisc electrodes were used to find the peak currents of oxygen at each volume percentage analysed. Platinum microband electrodes showed steady-state currents of different volumes of oxygen. These two results are compared which resulted in excellent agreement. This is further confirmed by studying Henrys law constants obtained from both electrodes. The excellent behaviour of these two fabricated electrodes suggests that they are suitable for quantitative measurements and practicable for real world applications.
Journal of Electroanalytical Chemistry | 2008
Debbie S. Silvester; Kristopher R. Ward; Leigh Aldous; Christopher Hardacre; Richard G. Compton
Archive | 2013
Richard G. Compton; Eduardo Laborda; Kristopher R. Ward
Journal of Electroanalytical Chemistry | 2013
Kristopher R. Ward; Matthew Gara; Nathan S. Lawrence; R. Seth Hartshorne; Richard G. Compton
Journal of Physical Chemistry C | 2011
Kristopher R. Ward; Nathan S. Lawrence; R. Seth Hartshorne; Richard G. Compton
Electroanalysis | 2014
Patricia T. Lee; Kristopher R. Ward; G. Chapman; Richard G. Compton