Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristy J. Brown is active.

Publication


Featured researches published by Kristy J. Brown.


Molecular & Cellular Proteomics | 2013

Interlaboratory Study on Differential Analysis of Protein Glycosylation by Mass Spectrometry: the ABRF Glycoprotein Research Multi-Institutional Study 2012

Nancy Leymarie; Paula J. Griffin; Karen R. Jonscher; Daniel Kolarich; Ron Orlando; Mark E. McComb; Joseph Zaia; Jennifer T Aguilan; William R. Alley; Friederich Altmann; Lauren E. Ball; Lipika Basumallick; Carthene R. Bazemore-Walker; Henning N. Behnken; Michael A. Blank; Kristy J. Brown; Svenja-Catharina Bunz; Christopher W. Cairo; John F. Cipollo; Rambod Daneshfar; Heather Desaire; Richard R. Drake; Eden P. Go; Radoslav Goldman; Clemens Gruber; Adnan Halim; Yetrib Hathout; Paul J. Hensbergen; D. Horn; Deanna C. Hurum

One of the principal goals of glycoprotein research is to correlate glycan structure and function. Such correlation is necessary in order for one to understand the mechanisms whereby glycoprotein structure elaborates the functions of myriad proteins. The accurate comparison of glycoforms and quantification of glycosites are essential steps in this direction. Mass spectrometry has emerged as a powerful analytical technique in the field of glycoprotein characterization. Its sensitivity, high dynamic range, and mass accuracy provide both quantitative and sequence/structural information. As part of the 2012 ABRF Glycoprotein Research Group study, we explored the use of mass spectrometry and ancillary methodologies to characterize the glycoforms of two sources of human prostate specific antigen (PSA). PSA is used as a tumor marker for prostate cancer, with increasing blood levels used to distinguish between normal and cancer states. The glycans on PSA are believed to be biantennary N-linked, and it has been observed that prostate cancer tissues and cell lines contain more antennae than their benign counterparts. Thus, the ability to quantify differences in glycosylation associated with cancer has the potential to positively impact the use of PSA as a biomarker. We studied standard peptide-based proteomics/glycomics methodologies, including LC-MS/MS for peptide/glycopeptide sequencing and label-free approaches for differential quantification. We performed an interlaboratory study to determine the ability of different laboratories to correctly characterize the differences between glycoforms from two different sources using mass spectrometry methods. We used clustering analysis and ancillary statistical data treatment on the data sets submitted by participating laboratories to obtain a consensus of the glycoforms and abundances. The results demonstrate the relative strengths and weaknesses of top-down glycoproteomics, bottom-up glycoproteomics, and glycomics methods.


Nature Communications | 2014

Mechanism of Ca²⁺-triggered ESCRT assembly and regulation of cell membrane repair.

Luana Scheffer; Sen Chandra Sreetama; Nimisha Sharma; Sushma Medikayala; Kristy J. Brown; Aurelia Defour; Jyoti K. Jaiswal

In muscle and other mechanically active tissue, cell membranes are constantly injured and their repair depends on the injury induced increase in cytosolic calcium. Here we show that injury-triggered Ca2+ increase results in assembly of ESCRTIII and accessory proteins at the site of repair. This process is initiated by the calcium binding protein - Apoptosis Linked Gene (ALG)-2. ALG-2 facilitates accumulation of ALG-2 interacting protein X (ALIX), ESCRT III, and Vps4 complex at the injured cell membrane, which in turn results in cleavage and shedding of the damaged part of the cell membrane. Lack of ALG-2, ALIX, or Vps4B each prevents shedding, and repair of the injured cell membrane. These results demonstrate Ca2+-dependent accumulation of ESCRTIII-Vps4 complex following large focal injury to the cell membrane and identify the role of ALG-2 as the initiator of sequential ESCRTIII-Vps4 complex assembly that facilitates scission and repair of the injured cell membrane.


Molecular & Cellular Proteomics | 2013

Identification of Disease Specific Pathways Using in Vivo SILAC Proteomics in Dystrophin Deficient mdx Mouse

Sree Rayavarapu; William Coley; Erdinc Cakir; Vanessa Jahnke; Shin Takeda; Yoshitsugu Aoki; Heather Grodish-Dressman; Jyoti K. Jaiswal; Eric P. Hoffman; Kristy J. Brown; Yetrib Hathout; Kanneboyina Nagaraju

Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disorder caused by a mutation in the dystrophin gene. DMD is characterized by progressive weakness of skeletal, cardiac, and respiratory muscles. The molecular mechanisms underlying dystrophy-associated muscle weakness and damage are not well understood. Quantitative proteomics techniques could help to identify disease-specific pathways. Recent advances in the in vivo labeling strategies such as stable isotope labeling in mouse (SILAC mouse) with 13C6-lysine or stable isotope labeling in mammals (SILAM) with 15N have enabled accurate quantitative analysis of the proteomes of whole organs and tissues as a function of disease. Here we describe the use of the SILAC mouse strategy to define the underlying pathological mechanisms in dystrophin-deficient skeletal muscle. Differential SILAC proteome profiling was performed on the gastrocnemius muscles of 3-week-old (early stage) dystrophin-deficient mdx mice and wild-type (normal) mice. The generated data were further confirmed in an independent set of mdx and normal mice using a SILAC spike-in strategy. A total of 789 proteins were quantified; of these, 73 were found to be significantly altered between mdx and normal mice (p < 0.05). Bioinformatics analyses using Ingenuity Pathway software established that the integrin-linked kinase pathway, actin cytoskeleton signaling, mitochondrial energy metabolism, and calcium homeostasis are the pathways initially affected in dystrophin-deficient muscle at early stages of pathogenesis. The key proteins involved in these pathways were validated by means of immunoblotting and immunohistochemistry in independent sets of mdx mice and in human DMD muscle biopsies. The specific involvement of these molecular networks early in dystrophic pathology makes them potential therapeutic targets. In sum, our findings indicate that SILAC mouse strategy has uncovered previously unidentified pathological pathways in mouse models of human skeletal muscle disease.


Molecular & Cellular Proteomics | 2011

Quantitative Proteomic Analyses of Human Cytomegalovirus-Induced Restructuring of Endoplasmic Reticulum-Mitochondrial Contacts at Late Times of Infection

Aiping Zhang; Chad D. Williamson; Daniel S. Wong; Matthew D. Bullough; Kristy J. Brown; Yetrib Hathout; Anamaris M. Colberg-Poley

Endoplasmic reticulum-mitochondrial contacts, known as mitochondria-associated membranes, regulate important cellular functions including calcium signaling, bioenergetics, and apoptosis. Human cytomegalovirus is a medically important herpesvirus whose growth increases energy demand and depends upon continued cell survival. To gain insight into how human cytomegalovirus infection affects endoplasmic reticulum-mitochondrial contacts, we undertook quantitative proteomics of mitochondria-associated membranes using differential stable isotope labeling by amino acids in cell culture strategy and liquid chromatography-tandem MS analysis. This is the first reported quantitative proteomic analyses of a suborganelle during permissive human cytomegalovirus infection. Human fibroblasts were uninfected or human cytomegalovirus-infected for 72 h. Heavy mitochondria-associated membranes were isolated from paired unlabeled, uninfected cells and stable isotope labeling by amino acids in cell culture-labeled, infected cells and analyzed by liquid chromatography-tandem MS analysis. The results were verified by a reverse labeling experiment. Human cytomegalovirus infection dramatically altered endoplasmic reticulum-mitochondrial contacts by late times. Notable is the increased abundance of several fundamental networks in the mitochondria-associated membrane fraction of human cytomegalovirus-infected fibroblasts. Chaperones, including HSP60 and BiP, which is required for human cytomegalovirus assembly, were prominently increased at endoplasmic reticulum-mitochondrial contacts after infection. Minimal translational and translocation machineries were also associated with endoplasmic reticulum-mitochondrial contacts and increased after human cytomegalovirus infection as were glucose regulated protein 75 and the voltage dependent anion channel, which can form an endoplasmic reticulum-mitochondrial calcium signaling complex. Surprisingly, mitochondrial metabolic enzymes and cytosolic glycolytic enzymes were confidently detected in the mitochondria-associated membrane fraction and increased therein after infection. Finally, proapoptotic regulatory proteins, including Bax, cytochrome c, and Opa1, were augmented in endoplasmic reticulum-mitochondrial contacts after infection, suggesting attenuation of proapoptotic signaling by their increased presence therein. Together, these results suggest that human cytomegalovirus infection restructures the proteome of endoplasmic reticulum-mitochondrial contacts to bolster protein translation at these junctions, calcium signaling to mitochondria, cell survival, and bioenergetics and, thereby, allow for enhanced progeny production.


Human Molecular Genetics | 2014

Discovery of serum protein biomarkers in the mdx mouse model and cross-species comparison to Duchenne muscular dystrophy patients

Yetrib Hathout; Ramya Marathi; Sree Rayavarapu; Aiping Zhang; Kristy J. Brown; Haeri Seol; Heather Gordish-Dressman; Sebahattin Cirak; Luca Bello; Kanneboyina Nagaraju; Terence A. Partridge; Eric P. Hoffman; Shin'ichi Takeda; Jean K. Mah; Erik Henricson; Craig M. McDonald

It is expected that serum protein biomarkers in Duchenne muscular dystrophy (DMD) will reflect disease pathogenesis, progression and aid future therapy developments. Here, we describe use of quantitative in vivo stable isotope labeling in mammals to accurately compare serum proteomes of wild-type and dystrophin-deficient mdx mice. Biomarkers identified in serum from two independent dystrophin-deficient mouse models (mdx-Δ52 and mdx-23) were concordant with those identified in sera samples of DMD patients. Of the 355 mouse sera proteins, 23 were significantly elevated and 4 significantly lower in mdx relative to wild-type mice (P-value < 0.001). Elevated proteins were mostly of muscle origin: including myofibrillar proteins (titin, myosin light chain 1/3, myomesin 3 and filamin-C), glycolytic enzymes (aldolase, phosphoglycerate mutase 2, beta enolase and glycogen phosphorylase), transport proteins (fatty acid-binding protein, myoglobin and somatic cytochrome-C) and others (creatine kinase M, malate dehydrogenase cytosolic, fibrinogen and parvalbumin). Decreased proteins, mostly of extracellular origin, included adiponectin, lumican, plasminogen and leukemia inhibitory factor receptor. Analysis of sera from 1 week to 7 months old mdx mice revealed age-dependent changes in the level of these biomarkers with most biomarkers acutely elevated at 3 weeks of age. Serum analysis of DMD patients, with ages ranging from 4 to 15 years old, confirmed elevation of 20 of the murine biomarkers in DMD, with similar age-related changes. This study provides a panel of biomarkers that reflect muscle activity and pathogenesis and should prove valuable tool to complement natural history studies and to monitor treatment efficacy in future clinical trials.


Pediatric Research | 2010

MUC5B Is the predominant mucin glycoprotein in chronic otitis media fluid.

Diego Preciado; Samita Goyal; Michael Rahimi; Alan M. Watson; Kristy J. Brown; Yetrib Hathout; Mary C. Rose

Chronic otitis media (COM), e.g. “glue” ear is characterized by middle ear effusion and conductive hearing loss. Although mucous glycoproteins (mucins), which contribute to increased effusion viscosity, have been analyzed in ear tissue specimens, no studies have been reported that characterize the molecular identity of secreted mucin proteins present in actual middle ear fluid. For this study, effusions from children with COM undergoing myringotomy at Childrens National Medical Center, Washington, DC were collected. These were solubilized and gel fractionated, and the protein content was identified using a liquid chromatography tandem mass spectrometry (LC-MS/MS) proteomics approach. Western blot analyses with mucin specific antibodies and densitometry were performed to validate the mass spectrometry findings. LC-MS/MS results identified mucin MUC5B by >26 unique peptides in six of six middle ear effusion samples, whereas mucin MUC5AC was only identified in one of six middle ear effusions. These findings were validated by Western blot performed on the same six and on an additional 11 separate samples where densitometry revealed on average a 6.4-fold increased signal in MUC5B when compared with MUC5AC (p = 0.0009). In summary, although both MUC5AC and MUC5B mucins are detected in middle ear effusions, MUC5B seems to be predominant mucin present in COM secretions.


Expert Review of Proteomics | 2012

Advances in the proteomic investigation of the cell secretome

Kristy J. Brown; Catherine A. Formolo; Haeri Seol; Ramya Marathi; Stephanie Duguez; Eunkyung An; Dinesh K. Pillai; Javad Nazarian; Brian R. Rood; Yetrib Hathout

Studies of the cell secretome have greatly increased in recent years owing to improvements in proteomic platforms, mass spectrometry instrumentation and to the increased interaction between analytical chemists, biologists and clinicians. Several secretome studies have been implemented in different areas of research, leading to the generation of a valuable secretome catalogs. Secreted proteins continue to be an important source of biomarkers and therapeutic target discovery and are equally valuable in the field of microbiology. Several discoveries have been achieved in vitro using cell culture systems, ex vivo using human tissue specimens and in vivo using animal models. In this review, some of the most recent advances in secretome studies and the fields that have benefited the most from this evolving technology are highlighted.


Cell Reports | 2015

TNF-α-Induced microRNAs Control Dystrophin Expression in Becker Muscular Dystrophy.

Alyson A. Fiorillo; Christopher R. Heier; James S. Novak; Christopher B. Tully; Kristy J. Brown; Kitipong Uaesoontrachoon; Maria C. Vila; Peter P. Ngheim; Luca Bello; Joe N. Kornegay; Corrado Angelini; Terence A. Partridge; Kanneboyina Nagaraju; Eric P. Hoffman

The amount and distribution of dystrophin protein in myofibers and muscle is highly variable in Becker muscular dystrophy and in exon-skipping trials for Duchenne muscular dystrophy. Here, we investigate a molecular basis for this variability. In muscle from Becker patients sharing the same exon 45-47 in-frame deletion, dystrophin levels negatively correlate with microRNAs predicted to target dystrophin. Seven microRNAs inhibit dystrophin expression in vitro, and three are validated in vivo (miR-146b/miR-374a/miR-31). microRNAs are expressed in dystrophic myofibers and increase with age and disease severity. In exon-skipping-treated mdx mice, microRNAs are significantly higher in muscles with low dystrophin rescue. TNF-α increases microRNA levels in vitro whereas NFκB inhibition blocks this in vitro and in vivo. Collectively, these data show that microRNAs contribute to variable dystrophin levels in muscular dystrophy. Our findings suggest a model where chronic inflammation in distinct microenvironments induces pathological microRNAs, initiating a self-sustaining feedback loop that exacerbates disease progression.


Physiological Genomics | 2014

Multi-omic integrated networks connect DNA methylation and miRNA with skeletal muscle plasticity to chronic exercise in Type 2 diabetic obesity

David S. Rowlands; Rachel Page; William R Sukala; Mamta Giri; Svetlana Ghimbovschi; Irum Hayat; Birinder S. Cheema; Isabelle Lys; Murray Leikis; Phillip Sheard; St. John Wakefield; Bernhard H. Breier; Yetrib Hathout; Kristy J. Brown; Ramya Marathi; Funda E. Orkunoglu-Suer; Joseph M. Devaney; Benjamin Leiken; Gina M. Many; Jeremy Krebs; Will G. Hopkins; Eric A. Hoffman

Epigenomic regulation of the transcriptome by DNA methylation and posttranscriptional gene silencing by miRNAs are potential environmental modulators of skeletal muscle plasticity to chronic exercise in healthy and diseased populations. We utilized transcriptome networks to connect exercise-induced differential methylation and miRNA with functional skeletal muscle plasticity. Biopsies of the vastus lateralis were collected from middle-aged Polynesian men and women with morbid obesity (44 kg/m(2) ± 10) and Type 2 diabetes before and following 16 wk of resistance (n = 9) or endurance training (n = 8). Longitudinal transcriptome, methylome, and microRNA (miRNA) responses were obtained via microarray, filtered by novel effect-size based false discovery rate probe selection preceding bioinformatic interrogation. Metabolic and microvascular transcriptome topology dominated the network landscape following endurance exercise. Lipid and glucose metabolism modules were connected to: microRNA (miR)-29a; promoter region hypomethylation of nuclear receptor factor (NRF1) and fatty acid transporter (SLC27A4), and hypermethylation of fatty acid synthase, and to exon hypomethylation of 6-phosphofructo-2-kinase and Ser/Thr protein kinase. Directional change in the endurance networks was validated by lower intramyocellular lipid, increased capillarity, GLUT4, hexokinase, and mitochondrial enzyme activity and proteome. Resistance training also lowered lipid and increased enzyme activity and caused GLUT4 promoter hypomethylation; however, training was inconsequential to GLUT4, capillarity, and metabolic transcriptome. miR-195 connected to negative regulation of vascular development. To conclude, integrated molecular network modelling revealed differential DNA methylation and miRNA expression changes occur in skeletal muscle in response to chronic exercise training that are most pronounced with endurance training and topographically associated with functional metabolic and microvascular plasticity relevant to diabetes rehabilitation.


The Journal of Neuroscience | 2013

Doublecortin (Dcx) family proteins regulate filamentous actin structure in developing neurons

Xiaoqin Fu; Kristy J. Brown; Chan Choo Yap; Bettina Winckler; Jyoti K. Jaiswal; Judy S. Liu

Doublecortin (Dcx) is the causative gene for X-linked lissencephaly, which encodes a microtubule-binding protein. Axon tracts are abnormal in both affected individuals and in animal models. To determine the reason for the axon tract defect, we performed a semiquantitative proteomic analysis of the corpus callosum in mice mutant for Dcx. In axons from mice mutant for Dcx, widespread differences are found in actin-associated proteins as compared with wild-type axons. Decreases in actin-binding proteins α-actinin-1 and α-actinin-4 and actin-related protein 2/3 complex subunit 3 (Arp3), are correlated with dysregulation in the distribution of filamentous actin (F-actin) in the mutant neurons with increased F-actin around the cell body and decreased F-actin in the neurites and growth cones. The actin distribution defect can be rescued by full-length Dcx and further enhanced by Dcx S297A, the unphosphorylatable mutant, but not with the truncation mutant of Dcx missing the C-terminal S/P-rich domain. Thus, the C-terminal region of Dcx dynamically regulates formation of F-actin features in developing neurons, likely through interaction with spinophilin, but not through α-actinin-4 or Arp3. We show with that the phenotype of Dcx/Doublecortin-like kinase 1 deficiency is consistent with actin defect, as these axons are selectively deficient in axon guidance, but not elongation.

Collaboration


Dive into the Kristy J. Brown's collaboration.

Top Co-Authors

Avatar

Yetrib Hathout

Children's National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Eric P. Hoffman

Children's National Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sree Rayavarapu

Children's National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Heather Gordish-Dressman

Children's National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Mary C. Rose

Children's National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Diego Preciado

Children's National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Brian R. Rood

Children's National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Dinesh K. Pillai

Children's National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Haeri Seol

Children's National Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge