Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristy Miskimen is active.

Publication


Featured researches published by Kristy Miskimen.


Blood | 2010

STAT5 Requires the N-Domain for Suppression of miR15/16, Induction of Bcl-2, and Survival Signaling in Myeloproliferative Disease.

Geqiang Li; Kristy Miskimen; Zhengqi Wang; Xiu Yan Xie; Jennifer Brenzovich; John J. Ryan; William Tse; Richard Moriggl; Kevin D. Bunting

Phosphorylated signal transducer and activator of transcription 5 (STAT5) is a biomarker and potential molecular target for hematologic malignancies. We have shown previously that lethal myeloproliferative disease (MPD) in mice mediated by persistently activated STAT5 (STAT5a(S711F)) requires the N-domain, but the mechanism was not defined. We now demonstrate by retrovirally complementing STAT5ab(null/null) primary mast cells that relative to wild-type STAT5a, STAT5a lacking the N-domain (STAT5aDeltaN) ineffectively protected against cytokine withdrawal-induced cell death. Both STAT5a and STAT5aDeltaN bound to a site in the bcl-2 gene and both bound near the microRNA 15b/16 cluster. However, only STAT5a could effectively induce bcl-2 mRNA and reciprocally suppress miR15b/16 leading to maintained bcl-2 protein levels. After retroviral complementation of STAT5ab(null/null) fetal liver cells and transplantation, persistently active STAT5a(S711F) lacking the N-domain (STAT5aDeltaN(S711F)) was insufficient to protect c-Kit(+)Lin(-)Sca-1(+) (KLS) cells from apoptosis and unable to induce bcl-2 expression, whereas STAT5a(S711F) caused robust KLS cell expansion, induction of bcl-2, and lethal MPD. Severe attenuation of MPD by STAT5aDeltaN(S711F) was reversed by H2k/bcl-2 transgenic expression. Overall, these studies define N-domain-dependent survival signaling as an Achilles heel of persistent STAT5 activation and highlight the potential therapeutic importance of targeting STAT5 N-domain-mediated regulation of bcl-2 family members.


Genome Research | 2015

Optimizing sparse sequencing of single cells for highly multiplex copy number profiling

Timour Baslan; Jude Kendall; Brian Ward; Hilary Cox; Anthony Leotta; Linda Rodgers; Michael Riggs; Sean D'Italia; Guoli Sun; Mao Yong; Kristy Miskimen; Hannah Gilmore; Michael Saborowski; Nevenka Dimitrova; Alexander Krasnitz; Lyndsay Harris; Michael Wigler; James Hicks

Genome-wide analysis at the level of single cells has recently emerged as a powerful tool to dissect genome heterogeneity in cancer, neurobiology, and development. To be truly transformative, single-cell approaches must affordably accommodate large numbers of single cells. This is feasible in the case of copy number variation (CNV), because CNV determination requires only sparse sequence coverage. We have used a combination of bioinformatic and molecular approaches to optimize single-cell DNA amplification and library preparation for highly multiplexed sequencing, yielding a method that can produce genome-wide CNV profiles of up to a hundred individual cells on a single lane of an Illumina HiSeq instrument. We apply the method to human cancer cell lines and biopsied cancer tissue, thereby illustrating its efficiency, reproducibility, and power to reveal underlying genetic heterogeneity and clonal phylogeny. The capacity of the method to facilitate the rapid profiling of hundreds to thousands of single-cell genomes represents a key step in making single-cell profiling an easily accessible tool for studying cell lineage.


Journal of Clinical Investigation | 2012

FAM83B mediates EGFR- and RAS-driven oncogenic transformation

Rocky Cipriano; James Graham; Kristy Miskimen; Benjamin L. Bryson; Ronald C. Bruntz; Sarah A. Scott; H. Alex Brown; George R. Stark; Mark W. Jackson

Aberrant regulation of growth signaling is a hallmark of cancer development that often occurs through the constitutive activation of growth factor receptors or their downstream effectors. Using validation-based insertional mutagenesis (VBIM), we identified family with sequence similarity 83, member B (FAM83B), based on its ability to substitute for RAS in the transformation of immortalized human mammary epithelial cells (HMECs). We found that FAM83B coprecipitated with a downstream effector of RAS, CRAF. Binding of FAM83B with CRAF disrupted CRAF/14-3-3 interactions and increased CRAF membrane localization, resulting in elevated MAPK and mammalian target of rapamycin (mTOR) signaling. Ablation of FAM83B inhibited the proliferation and malignant phenotype of tumor-derived cells or RAS-transformed HMECs, implicating FAM83B as a key intermediary in EGFR/RAS/MAPK signaling. Analysis of human tumor specimens revealed that FAM83B expression was significantly elevated in cancer and was associated with specific cancer subtypes, increased tumor grade, and decreased overall survival. Cumulatively, these results suggest that FAM83B is an oncogene and potentially represents a new target for therapeutic intervention.


Molecular Cancer Research | 2014

Conserved Oncogenic Behavior of the FAM83 Family Regulates MAPK Signaling in Human Cancer

Rocky Cipriano; Kristy Miskimen; Benjamin L. Bryson; Chase R. Foy; Courtney A. Bartel; Mark W. Jackson

FAM83B (family with sequence similarity 83, member B) was recently identified as a novel oncogene involved in activating CRAF/MAPK signaling and driving epithelial cell transformation. FAM83B is one of eight members of a protein family (FAM83) characterized by a highly conserved domain of unknown function (DUF1669), which is necessary and sufficient to drive transformation. Here, it is demonstrated that additional FAM83 members also exhibit oncogenic properties and have significantly elevated levels of expression in multiple human tumor types using a TissueScan Cancer Survey Panel PCR array and database mining. Furthermore, modeling the observed tumor expression of FAM83A, FAM83C, FAM83D, or FAM83E promoted human mammary epithelial cell (HMEC) transformation, which correlated with the ability of each FAM83 member to bind CRAF (RAF1) and promote CRAF membrane localization. Conversely, ablation of FAM83A or FAM83D from breast cancer cells resulted in diminished MAPK signaling with marked suppression of growth in vitro and tumorigenicity in vivo. Importantly, each FAM83 member was determined to be elevated in at least one of 17 distinct tumor types examined, with FAM83A, FAM83B, and FAM83D most frequently overexpressed in several diverse tissue types. Finally, evidence suggests that elevated expression of FAM83 members is associated with elevated tumor grade and decreased overall survival. Implications: FAM83 proteins represent a novel family of oncogenes suitable for the development of cancer therapies aimed at suppressing MAPK signaling. Mol Cancer Res; 12(8); 1156–65. ©2014 AACR.


Leukemia | 2010

Effective targeting of STAT5-mediated survival in myeloproliferative neoplasms using ABT-737 combined with rapamycin

Geqiang Li; Kristy Miskimen; Zhengqi Wang; Xiu Yan Silvia Xie; William K. F. Tse; Fabrice Gouilleux; Richard Moriggl; Kevin D. Bunting

Signal transducer and activator of transcription-5 (STAT5) is a critical transcription factor for normal hematopoiesis and its sustained activation is associated with hematologic malignancy. A persistently active mutant of STAT5 (STAT5aS711F) associates with Grb2-associated binding protein 2 (Gab2) in myeloid leukemias and promotes growth in vitro through AKT activation. Here we have retrovirally transduced wild-type or Gab2−/− mouse bone marrow cells expressing STAT5aS711F and transplanted into irradiated recipient mice to test an in vivo myeloproliferative disease model. To target Gab2-independent AKT/mTOR activation, we treated wild-type mice separately with rapamycin. In either case, mice lacking Gab2 or treated with rapamycin showed attenuated myeloid hyperplasia and modestly improved survival, but the effects were not cytotoxic and were reversible. To improve on this approach, we combined in vitro targeting of STAT5-mediated AKT/mTOR using rapamycin with inhibition of the STAT5 direct target genes bcl-2 and bcl-XL using ABT-737. Striking synergy with both drugs was observed in mouse BaF3 cells expressing STAT5aS711F, TEL-JAK2 or BCR-ABL and in the relatively single agent-resistant human BCR-ABL-positive K562 cell line. Therefore, targeting distinct STAT5-mediated survival signals, for example, bcl-2/bcl-XL and AKT/mTOR may be an effective therapeutic approach for human myeloproliferative neoplasms.


Oncogene | 2014

Hyperactivation of EGFR and downstream effector phospholipase D1 by oncogenic FAM83B.

Rocky Cipriano; Benjamin L. Bryson; Kristy Miskimen; C A Bartel; W Hernandez-Sanchez; R C Bruntz; Sarah A. Scott; C W Lindsley; H A Brown; Mark W. Jackson

Despite the progress made in targeted anticancer therapies in recent years, challenges remain. The identification of new potential targets will ensure that the arsenal of cancer therapies continues to expand. FAM83B was recently discovered in a forward genetic screen for novel oncogenes that drive human mammary epithelial cell (HMEC) transformation. We report here that elevated FAM83B expression increases Phospholipase D (PLD) activity, and that suppression of PLD1 activity prevents FAM83B-mediated transformation. The increased PLD activity is engaged by hyperactivation of epidermal growth factor receptor (EGFR), which is regulated by an interaction involving FAM83B and EGFR. Preventing the FAM83B/EGFR interaction by site-directed mutation of lysine 230 of FAM83B suppressed PLD activity and MAPK signaling. Furthermore, ablation of FAM83B expression from breast cancer cells inhibited EGFR phosphorylation and suppressed cell proliferation. We propose that understanding the mechanism of FAM83B-mediated transformation will provide a foundation for future therapies aimed at targeting its function as an intermediary in EGFR, MAPK and mTOR activation.


Clinical Cancer Research | 2016

Immune Signatures Following Single Dose Trastuzumab Predict Pathologic Response to PreoperativeTrastuzumab and Chemotherapy in HER2-Positive Early Breast Cancer

Vinay Varadan; Hannah Gilmore; Kristy Miskimen; David Tuck; Shikha Parsai; Amad Awadallah; Ian E. Krop; Veerle Bossuyt; George Somlo; Maysa Abu-Khalaf; Mary anne Fenton; William M. Sikov; Lyndsay Harris

Purpose: Recent data suggest that intrinsic subtype and immune cell infiltration may predict response to trastuzumab-based therapy. We studied the interaction between these factors, changes in immune signatures following brief exposure to trastuzumab, and achievement of pathologic complete response (pCR) to subsequent preoperative trastuzumab and chemotherapy in HER2-positive breast cancer. Experimental Design: In patients enrolled on two multicenter trials (03-311 and 211B), tumor core biopsies were obtained at baseline and after brief exposure to single-agent trastuzumab or nab-paclitaxel. Gene expression profiles were assessed to assign PAM50 subtypes, measure immune cell activation, and were correlated with response. Results: The pCR rate was significantly higher in HER2-enriched tumors in the Discovery, 03-311 (36%, P = 0.043) dataset, as compared with other subtypes, which validated in 211B (50%, P = 0.048). Significant increases in a signature of immune cell admixture (Immune Index) were observed only following brief exposure to trastuzumab in HER2-enriched tumors (Discovery/03-311, P = 0.05; Validation/211B, P = 0.02). Increased Immune Index was predictive of response after brief exposure (03-311, P = 0.03; 211B, P = 0.04), but not at baseline, in addition to increased expression of a CD4+ follicular helper T-cell signature (03-311, P = 0.05; 211B, P = 0.04). Brief exposure to trastuzumab significantly increased gene expression of the T-cell marker PD-1 in HER2-enriched tumors (Discovery/03-311, P = 0.045) and PD-1 positivity by IHC (Validation/211B, P = 0.035). Conclusions: Correlations between pCR rates, increases in Immune Index and markers of T-cell activity following brief exposure to trastuzumab in HER2-enriched tumors provide novel insights into the interaction between tumor biology, antitumor immunity, and response to treatment, and suggest potential clinically useful biomarkers in HER2+ breast cancers. Clin Cancer Res; 22(13); 3249–59. ©2016 AACR.


PLOS ONE | 2010

Gab2 Promotes Hematopoietic Stem Cell Maintenance and Self-Renewal Synergistically with STAT5

Geqiang Li; Zhengqi Wang; Kristy Miskimen; Yi Zhang; William Tse; Kevin D. Bunting

Background Grb2-associated binding (Gab) adapter proteins play major roles in coordinating signaling downstream of hematopoietic cytokine receptors. In hematopoietic cells, Gab2 can modulate phosphatidylinositol–3 kinase and mitogen associated protein kinase activities and regulate the long-term multilineage competitive repopulating activity of hematopoietic stem cells (HSCs). Gab2 may also act in a linear pathway upstream or downstream of signal transducer and activator of transcription-5 (STAT5), a major positive regulator of HSC function. Therefore, we aimed to determine whether Gab2 and STAT5 function in hematopoiesis in a redundant or non-redundant manner. Methodology/Principal Findings To do this we generated Gab2 mutant mice with heterozygous and homozygous deletions of STAT5. In heterozygous STAT5 mutant mice, deficiencies in HSC/multipotent progenitors were reflected by decreased long-term repopulating activity. This reduction in repopulation function was mirrored in the reduced growth response to early-acting cytokines from sorted double mutant c-Kit+Lin−Sca-1+ (KLS) cells. Importantly, in non-ablated newborn mice, the host steady-state engraftment ability was impaired by loss of Gab2 in heterozygous STAT5 mutant background. Fetal liver cells isolated from homozygous STAT5 mutant mice lacking Gab2 showed significant reduction in HSC number (KLS CD150+CD48−), reduced HSC survival, and dramatic loss of self-renewal potential as measured by serial transplantation. Conclusions/Significance These data demonstrate new functions for Gab2 in hematopoiesis in a manner that is non-redundant with STAT5. Furthermore, important synergy between STAT5 and Gab2 was observed in HSC self-renewal, which might be exploited to optimize stem cell-based therapeutics.


International Journal of Cancer | 2016

Brief‐exposure to preoperative bevacizumab reveals a TGF‐β signature predictive of response in HER2‐negative breast cancers

Vinay Varadan; Sitharthan Kamalakaran; Hannah Gilmore; Nilanjana Banerjee; Angel Janevski; Kristy Miskimen; Nicole Williams; Ajay Basavanhalli; Anant Madabhushi; Kimberly Lezon-Geyda; Veerle Bossuyt; Donald R. Lannin; Maysa Abu-Khalaf; William M. Sikov; Nevenka Dimitrova; Lyndsay Harris

To best define biomarkers of response, and to shed insight on mechanism of action of certain clinically important agents for early breast cancer, we used a brief‐exposure paradigm in the preoperative setting to study transcriptional changes in patient tumors that occur with one dose of therapy prior to combination chemotherapy. Tumor biopsies from breast cancer patients enrolled in two preoperative clinical trials were obtained at baseline and after one dose of bevacizumab (HER2‐negative), trastuzumab (HER2‐positive) or nab‐paclitaxel, followed by treatment with combination chemo‐biologic therapy. RNA‐Sequencing based PAM50 subtyping at baseline of 46 HER2‐negative patients revealed a strong association between the basal‐like subtype and pathologic complete response (pCR) to chemotherapy plus bevacizumab (p ≤ 0.0027), but did not provide sufficient specificity to predict response. However, a single dose of bevacizumab resulted in down‐regulation of a well‐characterized TGF‐β activity signature in every single breast tumor that achieved pCR (p ≤ 0.004). The TGF‐β signature was confirmed to be a tumor‐specific read‐out of the canonical TGF‐β pathway using pSMAD2 (p ≤ 0.04), with predictive power unique to brief‐exposure to bevacizumab (p ≤ 0.016), but not trastuzumab or nab‐paclitaxel. Down‐regulation of TGF‐β activity was associated with reduction in tumor hypoxia by transcription and protein levels, suggesting therapy‐induced disruption of an autocrine‐loop between tumor stroma and malignant cells. Modulation of the TGF‐β pathway upon brief‐exposure to bevacizumab may provide an early functional readout of pCR to preoperative anti‐angiogenic therapy in HER2‐negative breast cancer, thus providing additional avenues for exploration in both preclinical and clinical settings with these agents.


Current protocols in human genetics | 2017

Assay for Transposase‐Accessible Chromatin Using Sequencing (ATAC‐seq) Data Analysis

Kristy Miskimen; E. Ricky Chan; Jonathan L. Haines

The study of epigenetic properties of the human genome, including structural modifications of DNA and chromatin, has increased tremendously as mounting evidence has demonstrated how much epigenetics affects human gene expression. Buenrostro et al. have developed a rapid method, requiring low numbers of living cells as input, for examining chromatin accessibility across the epigenome, known as the assay for transposase‐accessible chromatin using sequencing (ATAC‐seq). The overall goal of this unit is to provide a thorough ATAC‐seq data analysis plan, as well as describe how primary human blood samples can be processed for use in ATAC‐seq. In addition, a number of quality control parameters are discussed to ensure the integrity and confidence in the ATAC‐seq data.

Collaboration


Dive into the Kristy Miskimen's collaboration.

Top Co-Authors

Avatar

Lyndsay Harris

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Vinay Varadan

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hannah Gilmore

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicole Williams

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Shaveta Vinayak

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Cheryl L. Thompson

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge