Kristyna Cihalova
Mendel University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kristyna Cihalova.
Nutrition | 2017
Sylvie Skalickova; Vedran Milosavljevic; Kristyna Cihalova; Pavel Horky; Lukas Richtera; Vojtech Adam
Selenium is an essential trace element in the diet, required for maintenance of health and growth; however, its toxicity could cause serious damage depending on dose and chemical form. Selenium nanoparticles (SeNPs) represent what we believe to be a novel prospect for nutritional supplementation because of their lower toxicity and ability to gradually release selenium after ingestion. In this review, we discuss various forms and types of SeNPs, as well as the way they are synthesized. We also discuss absorption and bioavailability of nanoparticles within the organism. SeNPs demonstrate anticancer and antimicrobial properties that may contribute to human health, not only as dietary supplements, but also as therapeutic agents.
Electrophoresis | 2015
Dagmar Chudobova; Kristyna Cihalova; Sylvie Skalickova; Jan Zitka; Vedran Milosavljevic; David Hynek; Pavel Kopel; Radek Vesely; Vojtech Adam; Rene Kizek
Methicillin‐resistant Staphylococcus aureus (MRSA) is a dangerous pathogen occurring not only in hospitals but also in foodstuff. Currently, discussions on the issue of the increasing resistance, and timely and rapid diagnostic of resistance strains have become more frequent and sought. Therefore, the aim of this study was to design an effective platform for DNA isolation from different species of microorganisms as well as the amplification of mecA gene that encodes the resistance to β‐lactam antibiotic formation and is contained in MRSA. For this purpose, we fabricated 3D‐printed chip that was suitable for bacterial cultivation, DNA isolation, PCR, and detection of amplified gene using gold nanoparticle (AuNP) probes as an indicator of MRSA. Confirmation of the MRSA presence in the samples was based on a specific interaction between mecA gene with the AuNP probes and a colorimetric detection, which utilized the noncross‐linking aggregation phenomenon of DNA‐functionalized AuNPs. To test the whole system, we analyzed several real refractive indexes, in which two of them were positively scanned to find the presence of mecA gene. The aggregation of AuNP probes were reflected by 75% decrease of absorbance (λ = 530 nm) and change in AuNPs size from 3 ± 0.05 to 4 ± 0.05 nm (n = 5). We provide the one‐step identification of mecA gene using the unique platform that employs the rapid, low‐cost, and easy‐to‐use colorimetric method for MRSA detection in various samples.
International Journal of Molecular Sciences | 2015
Kristyna Cihalova; Dagmar Chudobova; Petr Michalek; Amitava Moulick; Roman Guran; Pavel Kopel; Vojtech Adam; Rene Kizek
Methicillin-resistant Staphylococcus aureus (MRSA) is a dangerous pathogen resistant to β-lactam antibiotics. Due to its resistance, it is difficult to manage the infections caused by this strain. We examined this issue in terms of observation of the growth properties and ability to form biofilms in sensitive S. aureus and MRSA after the application of antibiotics (ATBs)—ampicillin, oxacillin and penicillin—and complexes of selenium nanoparticles (SeNPs) with these ATBs. The results suggest the strong inhibition effect of SeNPs in complexes with conventional ATBs. Using the impedance method, a higher disruption of biofilms was observed after the application of ATB complexes with SeNPs compared to the group exposed to ATBs without SeNPs. The biofilm formation was intensely inhibited (up to 99% ± 7% for S. aureus and up to 94% ± 4% for MRSA) after application of SeNPs in comparison with bacteria without antibacterial compounds whereas ATBs without SeNPs inhibited S. aureus up to 79% ± 5% and MRSA up to 16% ± 2% only. The obtained results provide a basis for the use of SeNPs as a tool for the treatment of bacterial infections, which can be complicated because of increasing resistance of bacteria to conventional ATB drugs.
Electrophoresis | 2014
Jiri Kudr; Kristyna Cihalova; Dagmar Chudobova; Michal Zurek; Ludek Zalud; Lukas Kopecny; Frantisek Burian; Branislav Ruttkay–Nedecky; Sona Krizkova; Marie Konečná; David Hynek; Pavel Kopel; Jan Prasek; Vojtech Adam; Rene Kizek
Remote‐controlled robotic systems are being used for analysis of various types of analytes in hostile environment including those called extraterrestrial. The aim of our study was to develop a remote‐controlled robotic platform (ORPHEUS‐HOPE) for bacterial detection. For the platform ORPHEUS‐HOPE a 3D printed flow chip was designed and created with a culture chamber with volume 600 μL. The flow rate was optimized to 500 μL/min. The chip was tested primarily for detection of 1‐naphthol by differential pulse voltammetry with detection limit (S/N = 3) as 20 nM. Further, the way how to capture bacteria was optimized. To capture bacterial cells (Staphylococcus aureus), maghemite nanoparticles (1 mg/mL) were prepared and modified with collagen, glucose, graphene, gold, hyaluronic acid, and graphene with gold or graphene with glucose (20 mg/mL). The most up to 50% of the bacteria were captured by graphene nanoparticles modified with glucose. The detection limit of the whole assay, which included capturing of bacteria and their detection under remote control operation, was estimated as 30 bacteria per μL.
Journal of Biotechnology | 2017
Marketa Kominkova; Vedran Milosavljevic; Petr Vitek; Hana Polanská; Kristyna Cihalova; Simona Dostalova; Veronika Hynstova; Roman Guran; Pavel Kopel; Lukas Richtera; Michal Masarik; Martin Brtnicky; Jindrich Kynicky; Ondrej Zitka; Vojtech Adam
Nanobiosynthesis belongs to the most recent methods for synthesis of nanoparticles. This type of synthesis provides many advantages including the uniformity in particle shape and size. The biosynthesis has also a significant advantage regarding chemical properties of the obtained particles. In this study, we characterized the basic properties and composition of quantum dots (QDs), obtained by the extracellular biosynthesis by Escherichia coli. Furthermore, the toxicity of the biosynthesized QDs was compared to QDs prepared by microwave synthesis. The obtained results revealed the presence of cyan CdTe QDs after removal of substantial amounts of organic compounds, which stabilized the nanoparticle surface. QDs toxicity was evaluated using three cell lines Human Foreskin Fibroblast (HFF), Human Prostate Cancer cells (PC-3) and Breast Cancer cells (MCF-7) and the MTT assay. The test revealed differences in the toxicity between variants of QDs, varying about 10% in the HFF and 30% in the MCF-7 cell lines. The toxicity of the biosynthesized QDs to the PC-3 cell lines was about 35% lower in comparison with the QDs prepared by microwave synthesis.
Molecules | 2015
Pavel Kopel; Dorota Wawrzak; Vratislav Langer; Kristyna Cihalova; Dagmar Chudobova; Radek Vesely; Vojtech Adam; Rene Kizek
1-(1H-Benzimidazol-2-yl)-N-(1H-benzimidazol-2-ylmethyl)methanamine (abb) and 2-(1H-benzimidazol-2-ylmethylsulfanylmethyl)-1H-benzimidazole (tbb) have been prepared and characterized by elemental analysis. These bis(benzimidazoles) have been further used in combination with trithiocyanuric acid for the preparation of complexes. The crystal and molecular structures of two of them have been solved. Each nickel atom in the structure of trinuclear complex [Ni3(abb)3(H2O)3(μ-ttc)](ClO4)3·3H2O·EtOH (1), where ttcH3 = trithiocyanuric acid, is coordinated with three N atoms of abb, the N,S donor set of ttc anion and an oxygen of a water molecule. The crystal of [(tbbH2)(ttcH2)2(ttcH3)(H2O)] (2) is composed of a protonated bis(benzimidazole), two ttcH2 anions, ttcH3 and water. The structure is stabilized by a network of hydrogen bonds. These compounds were primarily synthesized for their potential antimicrobial activity and hence their possible use in the treatment of infections caused by bacteria or yeasts (fungi). The antimicrobial and antifungal activity of the prepared compounds have been evaluated on a wide spectrum of bacterial and yeast strains and clinical specimens isolated from patients with infectious wounds and the best antimicrobial properties were observed in strains after the use of ligand abb and complex 1, when at least 80% growth inhibition was achieved.
Journal of Pharmaceutical and Biomedical Analysis | 2017
Kristyna Cihalova; Dagmar Hegerova; Ana Maria Jimenez Jimenez; Vedran Milosavljevic; Jiri Kudr; Sylvie Skalickova; David Hynek; Pavel Kopel; Marketa Vaculovicova; Vojtech Adam
HIGHLIGHTSDetection of S. aureus, methicillin‐resistant S. aureus and K. pneumoniae.The method was able to detect as low concentrations of bacteria as 102 CFU/mL.Detection was enabled using the bacteria‐specific genes (fnbA, mecA and wcaG).The proposed method is employing quantum dots and magnetic particles. ABSTRACT Staphylococcus aureus, methicillin‐resistant Staphylococcus aureus and Klebsiella pneumoniae are the most representative bacteria causing infectious diseases. Due to the increased application of antibiotics, the bacterial resistance is growing causing severe complications. Therefore, a sensitive determination of these pathogens is crucial for effective treatment. The aim of this study was to design an effective method for multiplex detection of Staphylococcus aureus, methicillin‐resistant Staphylococcus aureus and Klebsiella pneumoniae taking advantage from properties of magnetic particles as well as fluorescent nanoparticles (quantum dots). The method was able to detect as low concentrations of bacteria as 102 CFU/mL using the bacteria‐specific genes (fnbA, mecA and wcaG).
Monatshefte Fur Chemie | 2016
Simona Dostalova; Amitava Moulick; Vedran Milosavljevic; Roman Guráň; Marketa Kominkova; Kristyna Cihalova; Zbynek Heger; Lucie Blazkova; Pavel Kopel; David Hynek; Marketa Vaculovicova; Vojtěch Adam; Rene Kizek
Many active antiviral substances come from natural sources. In this way, peptides, isolated from Asian toad Bombina maxima, called maximins, are very promising. Most of them have good antimicrobial activity; however, derivatives of anionic 20 amino acids-long maximin H5 show also promising antiviral activity. The effect can be enhanced by binding to suitable nanocarriers such as fullerenes. In the present study, six mutants of maximin H5 were designed where aspartic acid at position 11 was replaced by asparagine, histidine, tyrosine, alanine, glycine, or valine. The binding yield of each peptide to fullerene C60 nanocrystals was studied by derivatization with fluorescent reagent fluorescamine. The antiviral activity of these peptides and peptides bound to fullerene C60 nanocrystals was studied using bacteriophage λ as a model virus. All of the designed peptides had higher antiviral activity compared to maximin H5. The highest antiviral activity was observed in case of maximin variants H5N, H5V, or H5Y. Moreover, the antiviral activity was dependent on the amount of peptide bound on the surface of fullerene C60 nanocrystals, which was enhanced by trimesic acid (benzene-1,3,5-tricarboxylic acid) treated fullerene C60 nanocrystals.Graphical abstract
PLOS ONE | 2017
Jiri Kudr; Amitava Moulick; Dagmar Hegerova; Branislav Ruttkay-Nedecky; Jaromír Gumulec; Kristyna Cihalova; Kristyna Smerkova; Simona Dostalova; Sona Krizkova; Marie Novotná; Pavel Kopel; Vojtech Adam
Sparsely tested group of platinum nanoparticles (PtNPs) may have a comparable effect as complex platinum compounds. The aim of this study was to observe the effect of PtNPs in in vitro amplification of DNA fragment of phage λ, on the bacterial cultures (Staphylococcus aureus), human foreskin fibroblasts and erythrocytes. In vitro synthesized PtNPs were characterized by dynamic light scattering (PtNPs size range 4.8–11.7 nm), zeta potential measurements (-15 mV at pH 7.4), X-ray fluorescence, UV/vis spectrophotometry and atomic absorption spectrometry. The PtNPs inhibited the DNA replication and affected the secondary structure of DNA at higher concentrations, which was confirmed by polymerase chain reaction, DNA sequencing and DNA denaturation experiments. Further, cisplatin (CisPt), as traditional chemotherapy agent, was used in all parallel experiments. Moreover, the encapsulation of PtNPs in liposomes (LipoPtNPs) caused an approximately 2.4x higher of DNA damage in comparison with CisPt, LipoCisPt and PtNPs. The encapsulation of PtNPs in liposomes also increased their antibacterial, cytostatic and cytotoxic effect, which was determined by the method of growth curves on S. aureus and HFF cells. In addition, both the bare and encapsulated PtNPs caused lower oxidative stress (determined by GSH/GSSG ratio) in the human erythrocytes compared to the bare and encapsulated CisPt. CisPt was used in all parallel experiments as traditional chemotherapy agent.
International Journal of Molecular Sciences | 2015
Marketa Kominkova; Petr Michalek; Kristyna Cihalova; Roman Guran; Natalia Cernei; Kristyna Smerkova; Simona Dostalova; Dagmar Chudobova; Zbynek Heger; Radek Vesely; Jaromír Gumulec; Jindrich Kynicky; Kledi Xhaxhiu; Ondrej Zitka; Vojtech Adam; Rene Kizek
In this work, we focused on the differences between bacterial cultures of E. coli obtained from swabs of infectious wounds of patients compared to laboratory E. coli. In addition, blocking of the protein responsible for the synthesis of glutathione (γ-glutamylcysteine synthase—GCL) using 10 mM buthionine sulfoximine was investigated. Each E. coli showed significant differences in resistance to antibiotics. According to the determined resistance, E. coli were divided into experimental groups based on a statistical evaluation of their properties as more resistant and more sensitive. These groups were also used for finding the differences in a dependence of the glutathione pathway on resistance to antibiotics. More sensitive E. coli showed the same kinetics of glutathione synthesis while blocking GCL (Km 0.1 µM), as compared to non-blocking. In addition, the most frequent mutations in genes of glutathione synthetase, glutathione peroxidase and glutathione reductase were observed in this group compared to laboratory E.coli. The group of “more resistant” E. coli exhibited differences in Km between 0.3 and 0.8 µM. The number of mutations compared to the laboratory E. coli was substantially lower compared to the other group.