Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristyna Pluhackova is active.

Publication


Featured researches published by Kristyna Pluhackova.


Journal of Chemical Theory and Computation | 2014

Going Backward: A Flexible Geometric Approach to Reverse Transformation from Coarse Grained to Atomistic Models

Tsjerk A. Wassenaar; Kristyna Pluhackova; Rainer A. Böckmann; Siewert J. Marrink; D. Peter Tieleman

The conversion of coarse-grained to atomistic models is an important step in obtaining insight about atomistic scale processes from coarse-grained simulations. For this process, called backmapping or reverse transformation, several tools are available, but these commonly require libraries of molecule fragments or they are linked to a specific software package. In addition, the methods are usually restricted to specific molecules and to a specific force field. Here, we present an alternative method, consisting of geometric projection and subsequent force-field based relaxation. This method is designed to be simple and flexible, and offers a generic solution for resolution transformation. For simple systems, the conversion only requires a list of particle correspondences on the two levels of resolution. For special cases, such as nondefault protonation states of amino acids and virtual sites, a target particle list can be specified. The mapping uses simple building blocks, which list the particles on the different levels of resolution. For conversion to higher resolution, the initial model is relaxed with several short cycles of energy minimization and position-restrained MD. The reconstruction of an atomistic backbone from a coarse-grained model is done using a new dedicated algorithm. The method is generic and can be used to map between any two particle based representations, provided that a mapping can be written. The focus of this work is on the coarse-grained MARTINI force field, for which mapping definitions are written to allow conversion to and from the higher-resolution force fields GROMOS, CHARMM, and AMBER, and to and from a simplified three-bead lipid model. Together, these offer the possibility to simulate mesoscopic membrane structures, to be transformed to MARTINI and subsequently to an atomistic model for investigation of detailed interactions. The method was tested on a set of systems ranging from a simple, single-component bilayer to a large protein-membrane-solvent complex. The results demonstrate the efficiency and the efficacy of the new approach.


Journal of Chemical Theory and Computation | 2012

Optimization of the OPLS-AA Force Field for Long Hydrocarbons

Shirley W. I. Siu; Kristyna Pluhackova; Rainer A. Böckmann

The all-atom optimized potentials for liquid simulations (OPLS-AA) force field is a popular force field for simulating biomolecules. However, the current OPLS parameters for hydrocarbons developed using short alkanes cannot reproduce the liquid properties of long alkanes in molecular dynamics simulations. Therefore, the extension of OPLS-AA to (phospho)lipid molecules required for the study of biological membranes was hampered in the past. Here, we optimized the OPLS-AA force field for both short and long hydrocarbons. Following the framework of the OPLS-AA parametrization, we refined the torsional parameters for hydrocarbons by fitting to the gas-phase ab initio energy profiles calculated at the accurate MP2/aug-cc-pVTZ theory level. Additionally, the depth of the Lennard-Jones potential for methylene hydrogen atoms was adjusted to reproduce the densities and the heats of vaporization of alkanes and alkenes of different lengths. Optimization of partial charges finally allowed to reproduce the gel-to-liquid-phase transition temperature for pentadecane and solvation free energies. It is shown that the optimized parameter set (L-OPLS) yields improved hydrocarbon diffusion coefficients, viscosities, and gauche-trans ratios. Moreover, its applicability for lipid bilayer simulations is shown for a GMO bilayer in its liquid-crystalline phase.


Journal of Physics: Condensed Matter | 2015

Biomembranes in atomistic and coarse-grained simulations

Kristyna Pluhackova; Rainer A. Böckmann

The architecture of biological membranes is tightly coupled to the localization, organization, and function of membrane proteins. The organelle-specific distribution of lipids allows for the formation of functional microdomains (also called rafts) that facilitate the segregation and aggregation of membrane proteins and thus shape their function. Molecular dynamics simulations enable to directly access the formation, structure, and dynamics of membrane microdomains at the molecular scale and the specific interactions among lipids and proteins on timescales from picoseconds to microseconds. This review focuses on the latest developments of biomembrane force fields for both atomistic and coarse-grained molecular dynamics (MD) simulations, and the different levels of coarsening of biomolecular structures. It also briefly introduces scale-bridging methods applicable to biomembrane studies, and highlights selected recent applications.


Journal of Chemical Theory and Computation | 2015

High-Throughput Simulations of Dimer and Trimer Assembly of Membrane Proteins. The DAFT Approach

Tsjerk A. Wassenaar; Kristyna Pluhackova; Anastassiia Moussatova; Durba Sengupta; Siewert J. Marrink; D. Peter Tieleman; Rainer A. Böckmann

Interactions between membrane proteins are of great biological significance and are consequently an important target for pharmacological intervention. Unfortunately, it is still difficult to obtain detailed views on such interactions, both experimentally, where the environment hampers atomic resolution investigation, and computationally, where the time and length scales are problematic. Coarse grain simulations have alleviated the later issue, but the slow movement through the bilayer, coupled to the long life times of nonoptimal dimers, still stands in the way of characterizing binding distributions. In this work, we present DAFT, a Docking Assay For Transmembrane components, developed to identify preferred binding orientations. The method builds on a program developed recently for generating custom membranes, called insane (INSert membrANE). The key feature of DAFT is the setup of starting structures, for which optimal periodic boundary conditions are devised. The purpose of DAFT is to perform a large number of simulations with different components, starting from unbiased noninteracting initial states, such that the simulations evolve collectively, in a manner reflecting the underlying energy landscape of interaction. The implementation and characteristic features of DAFT are explained, and the efficacy and relaxation properties of the method are explored for oligomerization of glycophorin A dimers, polyleucine dimers and trimers, MS1 trimers, and rhodopsin dimers. The results suggest that, for simple helices, such as GpA and polyleucine, in POPC/DOPC membranes series of 500 simulations of 500 ns each allow characterization of the helix dimer orientations and allow comparing associating and nonassociating components. However, the results also demonstrate that short simulations may suffer significantly from nonconvergence of the ensemble and that using too few simulations may obscure or distort features of the interaction distribution. For trimers, simulation times exceeding several microseconds appear needed, due to the increased complexity. Similarly, characterization of larger proteins, such as rhodopsin, takes longer time scales due to the slower diffusion and the increased complexity of binding interfaces. DAFT and its auxiliary programs have been made available from http://cgmartini.nl/ , together with a working example.


Frontiers in Physiology | 2017

The Multifaceted Role of SNARE Proteins in Membrane Fusion

Jing Han; Kristyna Pluhackova; Rainer A. Böckmann

Membrane fusion is a key process in all living organisms that contributes to a variety of biological processes including viral infection, cell fertilization, as well as intracellular transport, and neurotransmitter release. In particular, the various membrane-enclosed compartments in eukaryotic cells need to exchange their contents and communicate across membranes. Efficient and controllable fusion of biological membranes is known to be driven by cooperative action of SNARE proteins, which constitute the central components of the eukaryotic fusion machinery responsible for fusion of synaptic vesicles with the plasma membrane. During exocytosis, vesicle-associated v-SNARE (synaptobrevin) and target cell-associated t-SNAREs (syntaxin and SNAP-25) assemble into a core trans-SNARE complex. This complex plays a versatile role at various stages of exocytosis ranging from the priming to fusion pore formation and expansion, finally resulting in the release or exchange of the vesicle content. This review summarizes current knowledge on the intricate molecular mechanisms underlying exocytosis triggered and catalyzed by SNARE proteins. Particular attention is given to the function of the peptidic SNARE membrane anchors and the role of SNARE-lipid interactions in fusion. Moreover, the regulatory mechanisms by synaptic auxiliary proteins in SNARE-driven membrane fusion are briefly outlined.


Journal of Physical Chemistry B | 2016

A Critical Comparison of Biomembrane Force Fields: Structure and Dynamics of Model DMPC, POPC, and POPE Bilayers

Kristyna Pluhackova; Sonja A. Kirsch; Jing Han; Liping Sun; Zhenyan Jiang; Tobias Unruh; Rainer A. Böckmann

Atomistic molecular dynamics simulations have become an important source of information for the structure and dynamics of biomembranes at molecular detail difficult to access in experiments. A number of force fields for lipid membrane simulations have been derived in the past; the choice of the most suitable force field is, however, frequently hampered by the availability of parameters for specific lipids. Additionally, the comparison of different quantities among force fields is often aggravated by varying simulation parameters. Here, we compare four atomistic lipid force fields, namely, the united-atom GROMOS54a7 and the all-atom force fields CHARMM36, Slipids, and Lipid14, for a broad range of structural and dynamical properties of saturated and monounsaturated phosphatidylcholine bilayers (DMPC and POPC) as well as for monounsaturated phosphatidylethanolamine bilayers (POPE). Additionally, the ability of the different force fields to describe the gel-liquid crystalline phase transition is compared and their computational efficiency estimated. Moreover, membrane properties like the water flux across the lipid bilayer and lipid acyl chain protrusion probabilities are compared.


PLOS Computational Biology | 2016

Dynamic Cholesterol-Conditioned Dimerization of the G Protein Coupled Chemokine Receptor Type 4.

Kristyna Pluhackova; Stefan Gahbauer; Franziska Kranz; Tsjerk A. Wassenaar; Rainer A. Böckmann

G protein coupled receptors (GPCRs) allow for the transmission of signals across biological membranes. For a number of GPCRs, this signaling was shown to be coupled to prior dimerization of the receptor. The chemokine receptor type 4 (CXCR4) was reported before to form dimers and their functionality was shown to depend on membrane cholesterol. Here, we address the dimerization pattern of CXCR4 in pure phospholipid bilayers and in cholesterol-rich membranes. Using ensembles of molecular dynamics simulations, we show that CXCR4 dimerizes promiscuously in phospholipid membranes. Addition of cholesterol dramatically affects the dimerization pattern: cholesterol binding largely abolishes the preferred dimer motif observed for pure phospholipid bilayers formed mainly by transmembrane helices 1 and 7 (TM1/TM5-7) at the dimer interface. In turn, the symmetric TM3,4/TM3,4 interface is enabled first by intercalating cholesterol molecules. These data provide a molecular basis for the modulation of GPCR activity by its lipid environment.


Journal of Chemical Theory and Computation | 2009

Phenylalanyl-Glycyl-Phenylalanine Tripeptide: A Model System for Aromatic-Aromatic Side Chain Interactions in Proteins

Haydee Valdes; Kristyna Pluhackova; Pavel Hobza

The performance of a wide range of quantum chemical calculations for the ab initio study of realistic model systems of aromatic-aromatic side chain interactions in proteins (in particular those π-π interactions occurring between adjacent residues along the protein sequence) is here assessed on the phenylalanyl-glycyl-phenylalanine (FGF) tripeptide. Energies and geometries obtained at different levels of theory are compared with CCSD(T)/CBS benchmark energies and RI-MP2/cc-pVTZ benchmark geometries, respectively. Consequently, a protocol of calculation alternative to the very expensive CCSD(T)/CBS is proposed. In addition to this, the preferred orientation of the Phe aromatic side chains is discussed and compared with previous results on the topic.


Journal of Physical Chemistry A | 2008

On the Importance of Electron Correlation Effects for the Intramolecular Stacking Geometry of a Bis-Thiophene Derivative

Kristyna Pluhackova; Stefan Grimme; Pavel Hobza

The structure of dithienobicyclo[4.4.1]undeca-3,8-diene-11-one ethylene glycol ketal (database code RESVAN) was determined using the wave function theory (WFT) as well as density functional theory (DFT) methods combined with various Gaussian AO basis sets. The apparently most accurate procedure, employing the CCSD(T)/complete basis set (CBS), provides an S-S distance and an angle between the two thiophene rings which differ considerably from experimental values. The best agreement with the experimental data among all WFT methods was surprisingly obtained at the MP3/aug-cc-pVDZ and MP3/CBS(B) levels (the correction term to CBS was obtained by the aug-cc-pVDZ basis set). The very good results obtained by the CCSD(T)/6-31G* method are clearly a consequence of fortunate error compensation. MP2 calculations, even with a small basis set, overestimate the attraction between the thiophene rings, and the worst agreement with experimental data was found in full MP2/QZVP method optimizations (i.e., a strong distortion of the thiophene rings was observed). The SCS(MI)-MP2 and SCS-MP2 methods exhibit improvement over the MP2 procedure. All standard DFT approaches fail to predict reasonable S-S distances. The lack of intramolecular London dispersion energy results in too great distance between the thiophene rings. Much better agreement with experiment was obtained if advanced DFT methods, covering dispersion effects, were used. The best results were obtained at the TPSS-D/TZVP, M06-L/TZVP and B2PLYP-D/def2-TZVP levels. When a larger basis (LP in the case of TPSS functional) or more advanced versions of the new Truhlar functionals (M06-2X) was used, the agreement with experiment deteriorated. The accurate description of this molecule is highly functional/basis dependent and this dependence is hardly predictable. To estimate effects of neighboring molecules in the experimental crystal structure, an optimization in the electric field of the 26 closest RESVAN molecules was performed, which, however, leads to only moderate (<0.05 A) changes of the S-S distance.


Journal of Physical Chemistry B | 2015

Spontaneous Adsorption of Coiled-Coil Model Peptides K and E to a Mixed Lipid Bilayer

Kristyna Pluhackova; Tsjerk A. Wassenaar; Sonja A. Kirsch; Rainer A. Böckmann

A molecular description of the lipid-protein interactions underlying the adsorption of proteins to membranes is crucial for understanding, for example, the specificity of adsorption or the binding strength of a protein to a bilayer, or for characterizing protein-induced changes of membrane properties. In this paper, we extend an automated in silico assay (DAFT) for binding studies and apply it to characterize the adsorption of the model fusion peptides E and K to a mixed phospholipid/cholesterol membrane using coarse-grained molecular dynamics simulations. In addition, we couple the coarse-grained protocol to reverse transformation to atomistic resolution, thereby allowing to study molecular interactions with high detail. The experimentally observed differential binding of the peptides E and K to membranes, as well as the increased binding affinity of helical over unstructered peptides, could be well reproduced using the polarizable Martini coarse-grained (CG) force field. Binding to neutral membranes is shown to be dominated by initial binding of the positively charged N-terminus to the phospholipid headgroup region, followed by membrane surface-aligned insertion of the peptide at the interface between the hydrophobic core of the membrane and its polar headgroup region. Both coarse-grained and atomistic simulations confirm a before hypothesized snorkeling of lysine side chains for the membrane-bound state of the peptide K. Cholesterol was found to be enriched in peptide vicinity, which is probably of importance for the mechanism of membrane fusion. The applied sequential multiscale method, using coarse-grained simulations for the slow adsorption process of peptides to membranes followed by backward transformation to atomistic detail and subsequent atomistic simulations of the preformed peptide-lipid complexes, is shown to be a versatile approach to study the interactions of peptides or proteins with biomembranes.

Collaboration


Dive into the Kristyna Pluhackova's collaboration.

Top Co-Authors

Avatar

Rainer A. Böckmann

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jing Han

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sonja A. Kirsch

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Tobias Unruh

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pavel Hobza

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Lisa Lautner

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Stefan Gahbauer

University of Erlangen-Nuremberg

View shared research outputs
Researchain Logo
Decentralizing Knowledge