Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Krisztián Bányai is active.

Publication


Featured researches published by Krisztián Bányai.


Archives of Virology | 2011

Uniformity of Rotavirus Strain Nomenclature Proposed by the Rotavirus Classification Working Group (RCWG)

Jelle Matthijnssens; Max Ciarlet; Sarah M. McDonald; Houssam Attoui; Krisztián Bányai; J. Rodney Brister; Javier Buesa; Mathew D. Esona; Mary K. Estes; Jon R. Gentsch; Miren Iturriza-Gomara; Reimar Johne; Carl D. Kirkwood; Vito Martella; Peter P. C. Mertens; Osamu Nakagomi; Viviana Parreño; Mustafizur Rahman; Franco Maria Ruggeri; Linda J. Saif; Norma Santos; Andrej Steyer; Koki Taniguchi; John T. Patton; Ulrich Desselberger; Marc Van Ranst

In April 2008, a nucleotide-sequence-based, complete genome classification system was developed for group A rotaviruses (RVs). This system assigns a specific genotype to each of the 11 genome segments of a particular RV strain according to established nucleotide percent cutoff values. Using this approach, the genome of individual RV strains are given the complete descriptor of Gx-P[x]-Ix-Rx-Cx-Mx-Ax-Nx-Tx-Ex-Hx. The Rotavirus Classification Working Group (RCWG) was formed by scientists in the field to maintain, evaluate and develop the RV genotype classification system, in particular to aid in the designation of new genotypes. Since its conception, the group has ratified 51 new genotypes: as of April 2011, new genotypes for VP7 (G20-G27), VP4 (P[28]-P[35]), VP6 (I12-I16), VP1 (R5-R9), VP2 (C6-C9), VP3 (M7-M8), NSP1 (A15-A16), NSP2 (N6-N9), NSP3 (T8-T12), NSP4 (E12-E14) and NSP5/6 (H7-H11) have been defined for RV strains recovered from humans, cows, pigs, horses, mice, South American camelids (guanaco), chickens, turkeys, pheasants, bats and a sugar glider. With increasing numbers of complete RV genome sequences becoming available, a standardized RV strain nomenclature system is needed, and the RCWG proposes that individual RV strains are named as follows: RV group/species of origin/country of identification/common name/year of identification/G- and P-type. In collaboration with the National Center for Biotechnology Information (NCBI), the RCWG is also working on developing a RV-specific resource for the deposition of nucleotide sequences. This resource will provide useful information regarding RV strains, including, but not limited to, the individual gene genotypes and epidemiological and clinical information. Together, the proposed nomenclature system and the NCBI RV resource will offer highly useful tools for investigators to search for, retrieve, and analyze the ever-growing volume of RV genomic data.


The Journal of Infectious Diseases | 2005

Serotype Diversity and Reassortment between Human and Animal Rotavirus Strains: Implications for Rotavirus Vaccine Programs

Jon R. Gentsch; Ashley R. Laird; Brittany Bielfelt; Dixie D. Griffin; Krisztián Bányai; Vivek Jain; Nigel A. Cunliffe; Osamu Nakagomi; Carl D. Kirkwood; Thea Kølsen Fischer; Umesh D. Parashar; Joseph S. Bresee; Baoming Jiang; Roger I. Glass

The development of rotavirus vaccines that are based on heterotypic or serotype-specific immunity has prompted many countries to establish programs to assess the disease burden associated with rotavirus infection and the distribution of rotavirus strains. Strain surveillance helps to determine whether the most prevalent local strains are likely to be covered by the serotype antigens found in current vaccines. After introduction of a vaccine, this surveillance could detect which strains might not be covered by the vaccine. Almost 2 decades ago, studies demonstrated that 4 globally common rotavirus serotypes (G1-G4) represent >90% of the rotavirus strains in circulation. Subsequently, these 4 serotypes were used in the development of reassortant vaccines predicated on serotype-specific immunity. More recently, the application of reverse-transcription polymerase chain reaction genotyping, nucleotide sequencing, and antigenic characterization methods has confirmed the importance of the 4 globally common types, but a much greater strain diversity has also been identified (we now recognize strains with at least 42 P-G combinations). These studies also identified globally (G9) or regionally (G5, G8, and P2A[6]) common serotype antigens not covered by the reassortant vaccines that have undergone efficacy trials. The enormous diversity and capacity of human rotaviruses for change suggest that rotavirus vaccines must provide good heterotypic protection to be optimally effective.


Archives of Virology | 2008

Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments.

Jelle Matthijnssens; Max Ciarlet; Mustafizur Rahman; Houssam Attoui; Krisztián Bányai; Mary K. Estes; Jon R. Gentsch; Miren Iturriza-Gomara; Carl D. Kirkwood; Vito Martella; Peter P. C. Mertens; Osamu Nakagomi; John T. Patton; Franco Maria Ruggeri; Linda J. Saif; Norma Santos; Andrej Steyer; Koki Taniguchi; Ulrich Desselberger; Marc Van Ranst

Recently, a classification system was proposed for rotaviruses in which all the 11 genomic RNA segments are used (Matthijnssens et al. in J Virol 82:3204–3219, 2008). Based on nucleotide identity cut-off percentages, different genotypes were defined for each genome segment. A nomenclature for the comparison of complete rotavirus genomes was considered in which the notations Gx-P[x]-Ix-Rx-Cx-Mx-Ax-Nx-Tx-Ex-Hx are used for the VP7-VP4-VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5/6 encoding genes, respectively. This classification system is an extension of the previously applied genotype-based system which made use of the rotavirus gene segments encoding VP4, VP7, VP6, and NSP4. In order to assign rotavirus strains to one of the established genotypes or a new genotype, a standard procedure is proposed in this report. As more human and animal rotavirus genomes will be completely sequenced, new genotypes for each of the 11 gene segments may be identified. A Rotavirus Classification Working Group (RCWG) including specialists in molecular virology, infectious diseases, epidemiology, and public health was formed, which can assist in the appropriate delineation of new genotypes, thus avoiding duplications and helping minimize errors. Scientists discovering a potentially new rotavirus genotype for any of the 11 gene segments are invited to send the novel sequence to the RCWG, where the sequence will be analyzed, and a new nomenclature will be advised as appropriate. The RCWG will update the list of classified strains regularly and make this accessible on a website. Close collaboration with the Study Group Reoviridae of the International Committee on the Taxonomy of Viruses will be maintained.


Veterinary Microbiology | 2010

Zoonotic aspects of rotaviruses.

V. Martella; Krisztián Bányai; Jelle Matthijnssens; Canio Buonavoglia; Max Ciarlet

Rotaviruses are important enteric pathogens of humans and animals. Group A rotaviruses (GARVs) account for up to 1 million children deaths each year, chiefly in developing countries and human vaccines are now available in many countries. Rotavirus-associated enteritis is a major problem in livestock animals, notably in young calves and piglets. Early in the epidemiological GARV studies in humans, either sporadic cases or epidemics by atypical, animal-like GARV strains were described. Complete genome sequencing of human and animal GARV strains has revealed a striking genetic heterogeneity in the 11 double stranded RNA segments across different rotavirus strains and has provided evidence for frequent intersections between the evolution of human and animal rotaviruses, as a result of multiple, repeated events of interspecies transmission and subsequent adaptation.


Future Microbiology | 2009

Rotavirus disease and vaccination: impact on genotype diversity

Jelle Matthijnssens; Joke Bilcke; Max Ciarlet; Vito Martella; Krisztián Bányai; Mustafizur Rahman; Mark Zeller; Philippe Beutels; Pierre Van Damme; Marc Van Ranst

Temporal and spatial fluctuations in the genotype distribution of human rotaviruses are continuously observed in surveillance studies. New genotypes, such as G9 and G12, have emerged and spread worldwide in a very short time span. In addition, reassortment events have the potential to contribute substantially to genetic diversity among human and animal rotaviruses. With the recent introduction of the two rotavirus vaccines, RotaTeq and Rotarix, in many countries, it appears that the total number of hospitalizations due to rotavirus infections is being reduced, at least in developed countries that implemented a universal immunization program. However, continued surveillance is warranted, especially regarding the long-term effects of the vaccines. No data analyses are available to clarify whether rotavirus vaccine introduction would allow other rotavirus P and G genotypes, which are not covered by the current vaccines, to emerge into the human population and fill the apparent gap. This kind of data analysis is essential, but its interpretation is hampered by natural and cyclical genotype fluctuations.


Vaccine | 2012

Systematic review of regional and temporal trends in global rotavirus strain diversity in the pre rotavirus vaccine era: insights for understanding the impact of rotavirus vaccination programs.

Krisztián Bányai; Brigitta László; Jazmin Duque; A. Duncan Steele; E. Anthony S. Nelson; Jon R. Gentsch; Umesh D. Parashar

Recently, two rotavirus vaccines have been recommended for routine immunization of infants worldwide. These vaccines proved efficacious during clinical trials and field use in both developing and developed countries, and appear to provide good protection against a range of rotavirus genotypes, including some that are not included in the vaccines. However, since conclusive data that the vaccines will protect against a wide variety of rotavirus strains are still lacking and since vaccines may exert some selection pressure, a detailed picture of global strain prevalence from the pre-rotavirus vaccine era is important to evaluate any potential changes in circulating strains observed after widespread introduction of rotavirus vaccines. Thus, we systematically reviewed rotavirus genotyping studies spanning a 12-year period from 1996 to 2007. In total, ~110,000 strains were genotyped from 100 reporting countries. Five genotypes (G1-G4, and G9) accounted for 88% of all strains, although extensive geographic and temporal differences were observed. For example, the prevalence of G1 strains declined from 2000 onward, while G3 strains re-emerged, and G9 and G12 strains emerged during the same period. When crude strain prevalence data were weighted by region based on the regions contribution to global rotavirus mortality, the importance of genotypes G1 and G9 strains that were more prevalent in regions with low mortality was reduced and conversely the importance of G8 strains that were more prevalent in African settings with greater contribution to global rotavirus mortality was increased. This study provides the most comprehensive, up-to-date information on rotavirus strain surveillance in the pre-rotavirus vaccine era and will provide useful background to examine the impact of rotavirus vaccine introduction on future strain prevalence.


Archives of Virology | 2016

Taxonomy of the order Mononegavirales: update 2016

Claudio L. Afonso; Gaya K. Amarasinghe; Krisztián Bányai; Yīmíng Bào; Christopher F. Basler; Sina Bavari; Nicolás Bejerman; Kim R. Blasdell; François Xavier Briand; Thomas Briese; Alexander Bukreyev; Charles H. Calisher; Kartik Chandran; Jiāsēn Chéng; Anna N. Clawson; Peter L. Collins; Ralf G. Dietzgen; Olga Dolnik; Leslie L. Domier; Ralf Dürrwald; John M. Dye; Andrew J. Easton; Hideki Ebihara; Szilvia L. Farkas; Juliana Freitas-Astúa; Pierre Formenty; Ron A. M. Fouchier; Yànpíng Fù; Elodie Ghedin; Michael M. Goodin

In 2016, the order Mononegavirales was emended through the addition of two new families (Mymonaviridae and Sunviridae), the elevation of the paramyxoviral subfamily Pneumovirinae to family status (Pneumoviridae), the addition of five free-floating genera (Anphevirus, Arlivirus, Chengtivirus, Crustavirus, and Wastrivirus), and several other changes at the genus and species levels. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).


Epidemiology and Infection | 2011

Rotavirus genotypes co-circulating in Europe between 2006 and 2009 as determined by EuroRotaNet, a pan-European collaborative strain surveillance network

Miren Iturriza-Gomara; T. Dallman; Krisztián Bányai; Blenda Böttiger; Javier Buesa; Sabine Diedrich; Lucia Fiore; K. Johansen; Marion Koopmans; Neli Korsun; D. Koukou; A. Kroneman; Brigitta László; Maija Lappalainen; Leena Maunula; A. Mas Marques; Jelle Matthijnssens; Sofie Midgley; Zornitsa Mladenova; Sameena Nawaz; Mateja Poljšak-Prijatelj; P. Pothier; Franco Maria Ruggeri; Alicia Sánchez-Fauquier; Andrej Steyer; I. Sidaraviciute-Ivaskeviciene; V. Syriopoulou; A. N. Tran; Vytautas Usonis; M. Van Ranst

EuroRotaNet, a laboratory network, was established in order to determine the diversity of co-circulating rotavirus strains in Europe over three or more rotavirus seasons from 2006/2007 and currently includes 16 countries. This report highlights the tremendous diversity of rotavirus strains co-circulating in the European population during three years of surveillance since 2006/2007 and points to the possible origins of these strains including genetic reassortment and interspecies transmission. Furthermore, the ability of the network to identify strains circulating with an incidence of ≥1% allowed the identification of possible emerging strains such as G8 and G12 since the beginning of the study; analysis of recent data indicates their increased incidence. The introduction of universal rotavirus vaccination in at least two of the participating countries, and partial vaccine coverage in some others may provide data on diversity driven by vaccine introduction and possible strain replacement in Europe.


Journal of Virology | 2009

Are Human P[14] Rotavirus Strains the Result of Interspecies Transmissions from Sheep or Other Ungulates That Belong to the Mammalian Order Artiodactyla?

Jelle Matthijnssens; Christiaan A. Potgieter; Max Ciarlet; Viviana Parreño; Vito Martella; Krisztián Bányai; Lorena Garaicoechea; Enzo A. Palombo; Luis Novo; Mark Zeller; Serenella Arista; Giuseppe Gerna; Mustafizur Rahman; Marc Van Ranst

ABSTRACT A limited number of human G6P[14] rotavirus strains that cause gastroenteritis in humans have been isolated in Europe and Australia. The complete genome sequences were determined for five of these human strains—B10925-97 (isolated in Belgium in 1997), 111/05-27 (Italy, 2005), PA169 (Italy, 1987), MG6 (Australia, 1993), and Hun5 (Hungary, 1997)—and their genetic relatedness to animal rotavirus strains was evaluated by sequencing the complete genome of the sheep rotavirus OVR762 (G8P[14]; Spain, 2002), the guanaco (Lama guanicoe) rotavirus strains Arg/Chubut/99 and Arg/Río Negro/98 (G8P[14] and G8P[1], respectively; Argentina, 1999 and 1998), the sable antelope strain RC-18/08 (G6P[14]; South Africa, 2008), and the bovine rotavirus strain Arg/B383/98 (G15P[11]; Argentina, 1998). These analyses revealed an overall consensus genomic constellation (G6/G8)-P[14]-I2-(R2/R5)-C2-M2-(A3/A11)-N2-T6-(E2/E12)-H3, together with a few gene reassortments, and the phylogenetic analyses confirmed that the P[14] human strains evaluated in this study were closely related to rotavirus strains isolated from sheep, cattle, goats, guanacos, and antelopes and to rabbits (albeit to a lesser extent), suggesting that one (or more) of these animal species might be the source of the human G6P[14] strains. The main feature of the genotype and phylogenetic analyses was the close overall genomic relatedness between the five human G6P[14] rotavirus strains and the ovine and antelope rotavirus strains. Taken together, these data strongly suggest a common origin for the human P[14] strains and those of the even-toed ungulates belonging to the mammalian order Artiodactyla, with sheep probably playing a key role in the interspecies transmission responsible for the introduction of P[14] rotavirus strains into the human population.


Emerging Infectious Diseases | 2008

Detection and molecular characterization of a canine norovirus.

Vito Martella; Eleonora Lorusso; Niccola Decaro; Gabriella Elia; Arianna Radogna; Maria D’Abramo; Costantina Desario; Alessandra Cavalli; Marialaura Corrente; Michelle Camero; Cinzia A. Germinario; Krisztián Bányai; Barbara Di Martino; Fulvio Marsilio; Leland E. Carmichael; Canio Buonavoglia

We identified a novel calicivirus in a pup with enteritis. The isolate was related genetically (90.1% aa identity in the capsid protein) to a lion norovirus strain.

Collaboration


Dive into the Krisztián Bányai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Szilvia Marton

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Szilvia L. Farkas

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jon R. Gentsch

National Center for Immunization and Respiratory Diseases

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Enikő Fehér

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge