Krisztián Bogár
Stockholm University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Krisztián Bogár.
Journal of Medicinal Chemistry | 2012
Britt-Marie Swahn; Karin Kolmodin; Sofia Karlström; Stefan Berg; Peter Söderman; Jörg Holenz; Johan Lindström; M. Sundstrom; Jacob Kihlström; Can Slivo; Lars I. Andersson; David Pyring; Didier Rotticci; Liselotte Öhberg; Annika Kers; Krisztián Bogár; Fredrik von Kieseritzky; Margareta Bergh; Lise-Lotte Olsson; Juliette Janson; Susanna Eketjäll; Biljana Georgievska; Fredrik Jeppsson; Johanna Fälting
The evaluation of a series of aminoisoindoles as β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors and the discovery of a clinical candidate drug for Alzheimers disease, (S)-32 (AZD3839), are described. The improvement in permeability properties by the introduction of fluorine adjacent to the amidine moiety, resulting in in vivo brain reduction of Aβ40, is discussed. Due to the basic nature of these compounds, they displayed affinity for the human ether-a-go-go related gene (hERG) ion channel. Different ways to reduce hERG inhibition and increase hERG margins for this series are described, culminating in (S)-16 and (R)-41 showing large in vitro margins with BACE1 cell IC(50) values of 8.6 and 0.16 nM, respectively, and hERG IC(50) values of 16 and 2.8 μM, respectively. Several compounds were advanced into pharmacodynamic studies and demonstrated significant reduction of β-amyloid peptides in mouse brain following oral dosing.
Journal of Organic Chemistry | 2010
Lisa K. Thalén; Anna Sumic; Krisztián Bogár; Jacob Norinder; Andreas K. Å. Persson; Jan-Erling Bäckvall
An enantioselective method for the synthesis of α-methyl carboxylic acids starting from trans-cinnamaldehyde, a readily available and inexpensive compound, has been developed. Allylic alcohol 1 was obtained via a standard Grignard addition to trans-cinnamaldehyde. Dynamic kinetic resolution was applied to allylic alcohol 1 utilizing a ruthenium catalyst and either an (R)-selective lipase or an (S)-selective protease to provide the corresponding allylic esters in high yield and high ee. A copper-catalyzed allylic substitution was then applied to provide the corresponding alkenes with inversion of stereochemistry. Subsequent C-C double bond cleavage afforded pharmaceutically important α-methyl substituted carboxylic acids in high ee and overall yields of up to 76%.
Chemistry: A European Journal | 2010
Patrik Krumlinde; Krisztián Bogár; Jan-Erling Bäckvall
Enzyme- and ruthenium-catalyzed dynamic kinetic asymmetric transformation (DYKAT) of bicyclic diols to their diacetates was highly enantio- and diastereoselective to give the corresponding diacetates in high yield with high enantioselectivity (99.9 % ee). The enantiomerically pure diols are accessible by simple hydrolysis (NaOH, MeOH), but an alternative enzyme-catalyzed ester cleavage was also used to give the trans-diol (R,R)-1 b in extremely high diastereomeric purity (trans/cis=99.9:0.1, >99.9 % ee). It was demonstrated that the diols can be selectively oxidized to the ketoalcohols in a ruthenium-catalyzed Oppenauer-type reaction. A formal enantioselective synthesis of sertraline from a simple racemic cis/trans diol 1 b was demonstrated.
Journal of Organic Chemistry | 2010
Eric V. Johnston; Krisztián Bogár; Jan-Erling Bäckvall
An enantioselective synthesis of (R)-bufuralol via a ruthenium- and enzyme-catalyzed dynamic kinetic resolution (DKR) has been achieved. The synthesis starts from readily available 2-ethylphenol and provides (R)-bufuralol in high ee and a good overall yield of 31%.
Journal of Organic Chemistry | 2009
Patrik Krumlinde; Krisztián Bogár; Jan-Erling Bäckvall
Chemoenzymatic dynamic kinetic resolution (DKR) via combined ruthenium and enzyme catalysis was used in the key step of a synthesis of a neonicotinoid pesticide derivative (S)-3. The DKR was carried out under mild conditions with low catalyst loading. The method gives (S)-3 in high enantiomeric excess (98%).
Chemistry: A European Journal | 2013
Madeleine C. Warner; Grigory A. Shevchenko; Suzan Jouda; Krisztián Bogár; Jan-E. Bäckvall
Dynamic kinetic resolution of various homoallylic alcohols with the use of Candida antarctica lipase B and ruthenium catalyst 2 afforded homoallylic acetates in high yields and with high enantioselectivity. These enantiopure acetates were further transformed into homoallylic acrylates after hydrolysis of the ester function and subsequent DMAP-catalyzed esterification with acryloyl chloride. After ring-closing metathesis 5,6-dihydropyran-2-ones were obtained in good yields. Selective hydrogenation of the carboncarbon double bond afforded the corresponding δ-lactones without loss of chiral information.
Organic Letters | 2012
Madeleine C. Warner; Anuja Nagendiran; Krisztián Bogár; Jan-E. Bäckvall
A general and efficient route for the synthesis of enantiomerically pure α-substituted ketones and the corresponding lactones has been developed. Ruthenium- and enzyme-catalyzed dynamic kinetic resolution (DKR) with a subsequent Cu-catalyzed α-allylic substitution are the key steps of the route. The α-substituted ketones were obtained in high yields and with excellent enantiomeric excess. The methodology was applied to the synthesis of a naturally occurring caprolactone, (R)-10-methyl-6-undecanolide, via a subsequent Baeyer-Villiger oxidation.
Journal of the American Chemical Society | 2005
Belén Martín-Matute; Michaela Edin; Krisztián Bogár; F. Kaynak; Jan-E. Bäckvall
Angewandte Chemie | 2004
Belén Martín-Matute; Michaela Edin; Krisztián Bogár; Jan-E. Bäckvall
Chemistry: A European Journal | 2005
Belén Martín-Matute; Krisztián Bogár; Michaela Edin; F. Betül Kaynak; Jan-E. Bäckvall