Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Krisztián Horváth is active.

Publication


Featured researches published by Krisztián Horváth.


Analytical Chemistry | 2009

Generation and limitations of peak capacity in online two-dimensional liquid chromatography.

Krisztián Horváth; Jacob N. Fairchild; Georges Guiochon

The different operating conditions of an online two-dimensional liquid chromatographic separation (2D-LC), such as the length of the column, the linear velocity and the composition of the mobile phase used in the second dimension, its initial organic content if this separation is carried out in gradient elution, the number of fractions of the first column eluent collected, and the analysis time of the first dimension all affect the achievable separation power of 2D-LC online systems. The influences of these factors on the separation performance were investigated, and an equation was derived for the calculation of the achievable peak capacity in online 2D-LC assuming (1) that the option of undersampling the first-dimension separation is acceptable, (2) that the solutes follow linear-solvent-strength behavior, and (3) that all the separations are made in gradient elution. This theoretical discussion shows that (1) highly efficient separations made with online 2D-LC require the second-dimension peaks to be very narrow, (2) the separation power of 2D-LC systems is maximum for an optimum number of fractions collected in the first dimension, (3) higher peak capacities can be achieved by using shorter second-dimension columns and collecting a relatively large number of fractions, (4) the achievable 2D peak capacity is maximum for a certain eluent flow rate and column length of the second-dimension column, and (5) the maximum achievable peak capacity increases with decreasing velocity and initial organic content of the second-dimension eluent. As a consequence, due to the time restriction of the second-dimension gradient time, online 2D-LC schemes cannot realistically afford peak capacities exceeding 10,000, even if they are implemented with exceptionally efficient columns and if long analysis times are accepted.


Journal of Chromatography A | 2008

High performance ion chromatography of haloacetic acids on macrocyclic cryptand anion exchanger

Maria Concetta Bruzzoniti; Rosa Maria De Carlo; Krisztián Horváth; Daniela Perrachon; Ambra Prelle; Renáta Tófalvi; Corrado Sarzanini; Péter Hajós

A new high performance ion chromatographic method has been developed for the separation of the nine chlorinated-brominated haloacetic acids (HAAs) that are the disinfection by-products of chlorination of drinking water, using a macrocycle-based adjustable-capacity anion-exchange separator column (IonPac Cryptand A1). A gradient method based on theoretical and experimental considerations has been optimized in which 10 mM NaOH-LiOH step gradient was performed at the third minute of the analysis. The optimized method allowed us to separate the nine HAAs and seven possibly interfering inorganic anions in less than 25 min with acceptable resolution. The minimum concentrations detectable for HAAs were between 8.0 (MBA) and 210 (TBA) microg L(-1), with linearity included between 0.9947 (TBA) and 0.9998 (MBA). To increase sensitivity, a 25-fold preconcentration step on a reversed phase substrate (LiChrolut EN) has been coupled. Application of this method to the analysis of haloacetic acids in real tap water samples is illustrated.


Journal of Chromatography A | 2013

Influence of pressure and temperature on molar volume and retention properties of peptides in ultra-high pressure liquid chromatography.

Szabolcs Fekete; Krisztián Horváth; Davy Guillarme

In this study, pressure induced changes in retention were measured for model peptides possessing molecular weights between ∼1 and ∼4kDa. The goal of the present work was to evaluate if such changes were only attributed to the variation of molar volume and if they could be estimated prior to the experiments, using theoretical models. Restrictor tubing was employed to generate pressures up to 1000bar and experiments were conducted for mobile phase temperatures comprised between 30 and 80°C. As expected, the retention increases significantly with pressure, up to 200% for glucagon at around 1000bar compared to ∼100bar. The obtained data were fitted with a theoretical model and the determination coefficients were excellent (r(2)>0.9992) for the peptides at various temperatures. On the other hand, the pressure induced change in retention was found to be temperature dependent and was more pronounced at 30°C vs. 60 or 80°C. Finally, using the proposed model, it was possible to easily estimate the pressure induced increase in retention for any peptide and mobile phase temperature. This allows to easily estimating the expected change in retention, when increasing the column length under UHPLC conditions.


Journal of Chromatography A | 2012

How changing the particle structure can speed up protein mass transfer kinetics in liquid chromatography

Fabrice Gritti; Krisztián Horváth; Georges Guiochon

The mass transfer kinetics of a few compounds (uracil, 112 Da), insulin (5.5 kDa), lysozyme (13.4 kDa), and bovine serum albumin (BSA, 67 kDa) in columns packed with several types of spherical particles was investigated under non-retained conditions, in order to eliminate the poorly known contribution of surface diffusion to overall sample diffusivity across the porous particles in RPLC. Diffusivity across particles is then minimum. Based on the porosity of the particles accessible to analytes, it was accurately estimated from the elution times, the internal obstruction factor (using Pismen correlation), and the hindrance diffusion factor (using Renkin correlation). The columns used were packed with fully porous particles 2.5 μm Luna-C(18) 100 Å, core-shell particles 2.6 μm Kinetex-C(18) 100 Å, 3.6 μm Aeris Widepore-C(18) 200 Å, and prototype 2.7 μm core-shell particles (made of two concentric porous shells with 100 and 300 Å average pore size, respectively), and with 3.3 μm non-porous silica particles. The results demonstrate that the porous particle structure and the solid-liquid mass transfer resistance have practically no effect on the column efficiency for small molecules. For them, the column performance depends principally on eddy dispersion (packing homogeneity), to a lesser degree on longitudinal diffusion (effective sample diffusivity along the packed bed), and only slightly on the solid-liquid mass transfer resistance (sample diffusivity across the particle). In contrast, for proteins, this third HETP contribution, hence the porous particle structure, together with eddy dispersion govern the kinetic performance of columns. Mass transfer kinetics of proteins was observed to be fastest for columns packed with core-shell particles having either a large core-to-particle ratio or having a second, external, shell made of a thin porous layer with large mesopores (200-300 Å) and a high porosity (~/=0.5-0.7). The structure of this external shell seems to speed up the penetration of proteins into the particles. A stochastic model of the penetration of bulky proteins driven by a concentration gradient across an infinitely thin membrane of known porosity and pore size is suggested to explain this mechanism. Yet, under retained conditions, surface diffusion speeds up the mass transfer into the mesopores and levels the kinetic performance of particles built with either one or two porous shells.


Journal of Chromatography A | 2014

Effect of particle size distribution on the separation efficiency in liquid chromatography

Krisztián Horváth; Diána Lukács; Annamária Sepsey; Attila Felinger

In this work, the influence of the width of particle size distribution (PSD) on chromatographic efficiency is studied. The PSD is described by lognormal distribution. A theoretical framework is developed in order to calculate heights equivalent to a theoretical plate in case of different PSDs. Our calculations demonstrate and verify that wide particle size distributions have significant effect on the separation efficiency of molecules. The differences of fully porous and core-shell phases regarding the influence of width of PSD are presented and discussed. The efficiencies of bimodal phases were also calculated. The results showed that these packings do not have any advantage over unimodal phases.


Journal of Chromatography A | 2013

High performance ion chromatography of transition metal chelate complexes and aminopolycarboxylate ligands

Renáta Tófalvi; Krisztián Horváth; Péter Hajós

A simple ion chromatographic method was developed for the separation of transition metal chelates (CuEDTA, CuDCTA, ZnEDTA, ZnDCTA) and free anionic complexing ligands (EDTA, DCTA) using alkaline carbonate eluents and conductivity detection. The complex equilibria and kinetic process of separations were studied in order to understand major factors in the control of selectivity and retention order of complex anions. A systematic study was applied to identify the additional peaks of the system as NaEDTA(3-), NaHEDTA(2-), Na(2)EDTA(2-), EDTA(4-)/HEDTA(3-), DCTA(4-)/HDCTA(-3). On the basis of microequilibrium considerations of chelating ligand, it was shown that one should expect the peaks of sodium chelates when the ligand is in excess in the sample solution. The probability density function was introduced for calculation of complex chromatograms, because complexing ligands can exist in at least two different interconvertible forms in the presence of metal ion. The chromatogram of interconverting chelate species can be given as the sum of probability density functions (P) weighed by the molar fractions of complexed (Φ(ML)) and dissociated (Φ(L)) forms. The influences of kinetic rate of complex formation and dissociation on the distribution of components between eluents and ion exchange stationary phases were quantitatively described and demonstrated by elution profiles. The applicability of the developed method is represented by the simultaneous analysis of transition metal chelates and inorganic anions. ICP-AES analysis and FTIR-ATR technique were used for confirmation of IC results for metals and ligands, respectively. Collection protocols for the heart-cutting procedure of chromatograms were applied in the analysis of target components. The limit of detection and linearity of the method in the range of 0.01-0.25 mM sample concentration were also presented.


Materials | 2015

TiO2-Mediated Photocatalytic Mineralization of a Non-Ionic Detergent: Comparison and Combination with Other Advanced Oxidation Procedures

Péter Hegedűs; Erzsébet Szabó-Bárdos; Ottó Horváth; Krisztián Horváth; Péter Hajós

Triton X-100 is one of the most widely-applied man-made non-ionic surfactants. This detergent can hardly be degraded by biological treatment. Hence, a more efficient degradation method is indispensable for the total mineralization of this pollutant. Application of heterogeneous photocatalysis based on a TiO2 suspension is a possible solution. Its efficiency may be improved by the addition of various reagents. We have thoroughly examined the photocatalytic degradation of Triton X-100 under various circumstances. For comparison, the efficiencies of ozonation and treatment with peroxydisulfate were also determined under the same conditions. Besides, the combination of these advanced oxidation procedures (AOPs) were also studied. The mineralization of this surfactant was monitored by following the TOC and pH values, as well as the absorption and emission spectra of the reaction mixture. An ultra-high-performance liquid chromatography (UHPLC) method was developed and optimized for monitoring the degradation of Triton X-100. Intermediates were also detected by GC-MS analysis and followed during the photocatalysis, contributing to the elucidation of the degradation mechanism. This non-ionic surfactant could be efficiently degraded by TiO2-mediated heterogeneous photocatalysis. However, surprisingly, its combination with the AOPs applied in this study did not enhance the rate of the mineralization. Moreover, the presence of persulfate hindered the photocatalytic degradation.


Environmental Science and Pollution Research | 2014

Degradation of industrial surfactants by photocatalysis combined with ozonation.

Zoltán Zsilák; Orsolya Fónagy; Erzsébet Szabó-Bárdos; Ottó Horváth; Krisztián Horváth; Péter Hajós

The efficiency of titanium dioxide-mediated photocatalytic degradation of pollutants can be enhanced by combination with another advanced oxidation procedure such as ozonation. Mineralization of hydroxy- and dihydroxybenzenesulfonate based on these methods, both individually and combined, was investigated by monitoring the total organic carbon content, sulfate concentration, pH, high-performance liquid chromatography as well as the absorption spectral changes. The mineralization efficiency of the combined procedure significantly exceeded the sum of those of the individual techniques. The comparison of the disappearance of the starting material and the formation of the sulfate ions indicates that desulfonation is not the primary step of the degradation. Moreover, in the case of the combined method, ring cleavage, and thus, partial mineralization can occur without desulfonation. Efficient degradation of other, widely used industrial surfactants, such as alkylbenzene sulfonates and alkyl ether sulfates, was also achieved by heterogeneous photocatalysis combined with ozonation, offering an applicable method for the removal of these pollutants.


Journal of Chromatography A | 2008

Equilibrium-based approach for prediction of matrix-related interferences in anion chromatography

Péter Hajós; Krisztián Horváth

The retention behavior of low-concentration inorganic anions was studied systematically as a function of changing high matrix anion concentration. Stoichiometric retention model was developed for interpretation and prediction of matrix effects in ion chromatography. The model was tested and utilized for separation of low concentration (1-5 mg/l) bromate, bromide, chloride, nitrate, ethanesulfonate, and pentanesulfonate ions with carbonate buffer and hydroxide eluent in relatively wide ranges of sulfate matrix (>2000 mg/l). Equilibrium-based approach effectively characterizes the selectivity of the complex system through differences in ion-exchange constants of analyte, eluent and matrix ions. Selectivity data were determined from the experimental retention data by iterative calculations using the derived equations. The predicted and observed retention data are in rather good agreement. The method describes precisely the retention shift of trace anions in the high level of ionic matrices. The results in quantitative three-dimensional retention surfaces (k, matrix and eluent concentration) together with species distribution graphs are also presented.


Journal of Chromatography A | 2017

Effect of axial temperature gradient on chromatographic efficiency under adiabatic conditions

Krisztián Horváth; Szabolcs Horváth; Diána Lukács

The effect of axial temperature gradient on the chromatographic efficiency was studied under adiabatic conditions by a modeling approach. The equilibrium-dispersive model of chromatography was used for the calculations. The model was extended by taking into account the axial temperature gradient. The results show that due to the temperature gradient, there are retention and migration velocity gradients in the column. Since the retention factor, k, is not constant in the column, k cannot be calculated as the ratio of net retention and hold-up times. As a result of the gradual increase of migration velocity, the retention times of solutes decrease as the slope of temperature gradient increases. In addition, the band in the column have extra broadening due to larger migration velocity of the front of band. The width of bands becomes larger at larger change of temperature. In the same time, however, the release velocity of the compounds from the column is increasing as ΔT increases. Accordingly, an apparent peak compression effect makes the peaks thinner. As a result of the two counteracting effects (peak expansion, apparent peak compression) the column efficiency does not change significantly in case of axial temperature gradient under adiabatic conditions. The resolutions, however, decrease slightly due to the decrease of retention times.

Collaboration


Dive into the Krisztián Horváth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge