Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Krisztián Szigeti is active.

Publication


Featured researches published by Krisztián Szigeti.


Biomaterials | 2014

Aluminium hydroxide stabilised MnFe2O4 and Fe3O4 nanoparticles as dual-modality contrasts agent for MRI and PET imaging

Xianjin Cui; Salome Belo; Dirk Krüger; Yong Yan; Rafael T. M. de Rosales; Maite Jauregui-Osoro; Haitao Ye; Shi Su; Domokos Máthé; Noémi Kovács; Ildiko Horvath; Mariann Semjeni; Kavitha Sunassee; Krisztián Szigeti; Mark Green; Philip J. Blower

Magnetic nanoparticles (NPs) MnFe2O4 and Fe3O4 were stabilised by depositing an Al(OH)3 layer via a hydrolysis process. The particles displayed excellent colloidal stability in water and a high affinity to [18F]-fluoride and bisphosphonate groups. A high radiolabeling efficiency, 97% for 18F-fluoride and 100% for 64Cu-bisphosphonate conjugate, was achieved by simply incubating NPs with radioactivity solution at room temperature for 5 min. The properties of particles were strongly dependant on the thickness and hardness of the Al(OH)3 layer which could in turn be controlled by the hydrolysis method. The application of these Al(OH)3 coated magnetic NPs in molecular imaging has been further explored. The results demonstrated that these NPs are potential candidates as dual modal probes for MR and PET. In vivo PET imaging showed a slow release of 18F from NPs, but no sign of efflux of 64Cu.


Arthritis & Rheumatism | 2014

Differential regulatory role of pituitary adenylate cyclase-activating polypeptide in the serum-transfer arthritis model.

Bálint Botz; Kata Bölcskei; László Kereskai; Miklós Kovács; Tamás Németh; Krisztián Szigeti; Ildiko Horvath; Domokos Máthé; Noémi Kovács; Hitoshi Hashimoto; Dóra Reglődi; János Szolcsányi; Erika Pintér; Attila Mócsai; Zsuzsanna Helyes

Pituitary adenylate cyclase–activating polypeptide (PACAP) expressed in capsaicin‐sensitive sensory neurons and immune cells has divergent functions in inflammatory and pain processes. This study was undertaken to investigate the involvement of PACAP in a mouse model of rheumatoid arthritis.


Molecular Diagnosis & Therapy | 2014

Preclinical imaging: An essential ally in modern biosciences

Lídia Cunha; Ildiko Horvath; Sara Ferreira; Joana Lemos; Pedro Costa; Domingos Vieira; Dániel S. Veres; Krisztián Szigeti; Teresa Summavielle; Domokos Máthé; Luís F. Metello

Translational research is changing the practice of modern medicine and the way in which health problems are approached and solved. The use of small-animal models in basic and preclinical sciences is a major keystone for these kinds of research and development strategies, representing a bridge between discoveries at the molecular level and clinical implementation in diagnostics and/or therapeutics. The development of high-resolution in vivo imaging technologies provides a unique opportunity for studying disease in real time, in a quantitative way, at the molecular level, along with the ability to repeatedly and non-invasively monitor disease progression or response to treatment. The greatest advantages of preclinical imaging techniques include the reduction of biological variability and the opportunity to acquire, in continuity, an impressive amount of unique information (without interfering with the biological process under study) in distinct forms, repeated or modulated as needed, along with the substantial reduction in the number of animals required for a particular study, fully complying with 3R (Replacement, Reduction and Refinement) policies. The most suitable modalities for small-animal in vivo imaging applications are based on nuclear medicine techniques (essentially, positron emission tomography [PET] and single photon emission computed tomography [SPECT]), optical imaging (OI), computed tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy imaging (MRSI), and ultrasound. Each modality has intrinsic advantages and limitations. More recently, aiming to overcome the inherent limitations of each imaging modality, multimodality devices designed to provide complementary information upon the pathophysiological process under study have gained popularity. The combination of high-resolution modalities, like micro-CT or micro-MRI, with highly sensitive techniques providing functional information, such as micro-PET or micro-SPECT, will continue to broaden the horizons of research in such key areas as infection, oncology, cardiology, and neurology, contributing not only to the understanding of the underlying mechanisms of disease, but also providing efficient and unique tools for evaluating new chemical entities and candidate drugs. The added value of small-animal imaging techniques has driven their increasing use by pharmaceutical companies, contract research organizations, and research institutions.


Drug Discovery Today | 2014

The role of molecular imaging in modern drug development

Lídia Cunha; Krisztián Szigeti; Domokos Máthé; Luís F. Metello

Drug development represents a highly complex, inefficient and costly process. Over the past decade, the widespread use of nuclear imaging, owing to its functional and molecular nature, has proven to be a determinant in improving the efficiency in selecting the candidate drugs that should either be abandoned or moved forward into clinical trials. This helps not only with the development of safer and effective drugs but also with the shortening of time-to-market. The modern concept and future trends concerning molecular imaging will assumedly be hybrid or multimodality imaging, including combinations between high sensitivity and functional (molecular) modalities with high spatial resolution and morphological techniques.


Bioconjugate Chemistry | 2016

Synthesis, Characterization, and Application of Core–Shell Co0.16Fe2.84O4@NaYF4(Yb, Er) and Fe3O4@NaYF4(Yb, Tm) Nanoparticle as Trimodal (MRI, PET/SPECT, and Optical) Imaging Agents

Xianjin Cui; Domokos Máthé; Noémi Kovács; Ildiko Horvath; Maite Jauregui-Osoro; Rafael T. M. de Rosales; Gregory Mullen; Wilson Wong; Yong Yan; Dirk Krüger; Andrei N. Khlobystov; Maria del Carmen Gimenez-Lopez; Mariann Semjeni; Krisztián Szigeti; Dániel S. Veres; Haizhou Lu; Ignacio Hernández; W. P. Gillin; Andrea Protti; Katalin Kis Petik; Mark Green; Philip J. Blower

Multimodal nanoparticulate materials are described, offering magnetic, radionuclide, and fluorescent imaging capabilities to exploit the complementary advantages of magnetic resonance imaging (MRI), positron emission tomography/single-photon emission commuted tomography (PET/SPECT), and optical imaging. They comprise Fe3O4@NaYF4 core/shell nanoparticles (NPs) with different cation dopants in the shell or core, including Co0.16Fe2.84O4@NaYF4(Yb, Er) and Fe3O4@NaYF4(Yb, Tm). These NPs are stabilized by bisphosphonate polyethylene glycol conjugates (BP-PEG), and then show a high transverse relaxivity (r2) up to 326 mM(-1) s(-1) at 3T, a high affinity to [(18)F]-fluoride or radiometal-bisphosphonate conjugates (e.g., (64)Cu and (99m)Tc), and fluorescent emissions from 500 to 800 nm under excitation at 980 nm. The biodistribution of intravenously administered particles determined by PET/MR imaging suggests that negatively charged Co0.16Fe2.84O4@NaYF4(Yb, Er)-BP-PEG (10K) NPs cleared from the blood pool more slowly than positively charged NPs Fe3O4@NaYF4(Yb, Tm)-BP-PEG (2K). Preliminary results in sentinel lymph node imaging in mice indicate the advantages of multimodal imaging.


Biochemistry | 2011

Zn2+-Induced Rearrangement of the Disordered TPPP/p25 Affects Its Microtubule Assembly and GTPase Activity

Ágnes Zotter; Judit Oláh; Emma Hlavanda; Andrea Bodor; András Perczel; Krisztián Szigeti; Judit Fidy; Judit Ovádi

Tubulin polymerization promoting protein/p25 (TPPP/p25) modulates the dynamics and stability of the microtubule system and plays crucial role in the myelination of oligodendrocytes. Here we showed by CD, fluorescence, and NMR spectroscopies that Zn(2+) is the first ligand that induces considerable rearrangement of the disordered TPPP/p25. Zinc finger motif (His(2)Cys(2)) (His(61)-Cys(83)) was identified within the flexible region of TPPP/p25 straddled by extended unstructured N- and C-terminal regions. The specific binding of the Zn(2+) to TPPP/p25 induced the formation of molten globule but not that of a well-defined tertiary structure. The Zn(2+)-induced partially folded structure accommodating the zinc binding motif is localized at the single Trp(76)-containing region as demonstrated by fluorescence resonance energy transfer and quenching experiments. We showed that the Zn(2+)-induced change in the TPPP/p25 structure modified its interaction with tubulin and GTP coupled with functional consequences: the TPPP/p25-promoted tubulin polymerization was increased while the TPPP/p25-catalyzed GTPase activity was decreased as detected by turbidimetry and by malachite green phosphate release/(31)P NMR assays, respectively. The finding that the Zn(2+) of the bivalent cations can uniquely influence physiological relavant interactions significantly contributes to our understanding of the role of Zn(2+)-related TPPP/p25 processes in the differentiation/myelination of oligodendrocytes possessing a high-affinity Zn(2+) uptake mechanism.


American Journal of Physiology-heart and Circulatory Physiology | 2016

Diastolic dysfunction in prediabetic male rats: Role of mitochondrial oxidative stress

Gábor Koncsos; Zoltán V. Varga; Tamás Baranyai; Kerstin Boengler; Susanne Rohrbach; L. Li; Klaus-Dieter Schlüter; Rolf Schreckenberg; Tamás Radovits; Attila Oláh; Csaba Mátyás; Árpád Lux; Mahmoud Al-Khrasani; Tímea Komlódi; Nóra Bukosza; Domokos Máthé; Laszlo Deres; Monika Bartekova; Tomas Rajtik; Adriana Adameova; Krisztián Szigeti; Péter Hamar; Zsuzsanna Helyes; Laszlo Tretter; Pál Pacher; Béla Merkely; Zoltán Giricz; Rainer Schulz; Péter Ferdinandy

Although incidence and prevalence of prediabetes are increasing, little is known about its cardiac effects. Therefore, our aim was to investigate the effect of prediabetes on cardiac function and to characterize parameters and pathways associated with deteriorated cardiac performance. Long-Evans rats were fed with either control or high-fat chow for 21 wk and treated with a single low dose (20 mg/kg) of streptozotocin at week 4 High-fat and streptozotocin treatment induced prediabetes as characterized by slightly elevated fasting blood glucose, impaired glucose and insulin tolerance, increased visceral adipose tissue and plasma leptin levels, as well as sensory neuropathy. In prediabetic animals, a mild diastolic dysfunction was observed, the number of myocardial lipid droplets increased, and left ventricular mass and wall thickness were elevated; however, no molecular sign of fibrosis or cardiac hypertrophy was shown. In prediabetes, production of reactive oxygen species was elevated in subsarcolemmal mitochondria. Expression of mitofusin-2 was increased, while the phosphorylation of phospholamban and expression of Bcl-2/adenovirus E1B 19-kDa protein-interacting protein 3 (BNIP3, a marker of mitophagy) decreased. However, expression of other markers of cardiac auto- and mitophagy, mitochondrial dynamics, inflammation, heat shock proteins, Ca2+/calmodulin-dependent protein kinase II, mammalian target of rapamycin, or apoptotic pathways were unchanged in prediabetes. This is the first comprehensive analysis of cardiac effects of prediabetes indicating that mild diastolic dysfunction and cardiac hypertrophy are multifactorial phenomena that are associated with early changes in mitophagy, cardiac lipid accumulation, and elevated oxidative stress and that prediabetes-induced oxidative stress originates from the subsarcolemmal mitochondria.


Biochimica et Biophysica Acta | 2008

The structure of horseradish peroxidase C characterized as a molten globule state after Ca2+ depletion

Krisztián Szigeti; László Smeller; Szabolcs Osváth; Zsuzsanna Majer; Judit Fidy

The structure and activity of native horseradish peroxidase C (HRP) is stabilized by two bound Ca(2+) ions. Earlier studies suggested a critical role of one of the bound Ca(2+) ions but with conflicting conclusions concerning their respective importance. In this work we compare the native and totally Ca(2+)-depleted forms of the enzyme using pH-, pressure-, viscosity- and temperature-dependent UV absorption, CD, H/D exchange-FTIR spectroscopy and by binding the substrate benzohydroxamic acid (BHA). We report that Ca(2+)-depletion does not change the alpha helical content of the protein, but strongly modifies the tertiary structure and dynamics to yield a homogeneously loosened molten globule-like structure. We relate observed tertiary changes in the heme pocket to changes in the dipole orientation and coordination of a distal water molecule. Deprotonation of distal His42, linked to Asp43, itself coordinated to the distal Ca(2+), perturbs a H-bonding network connecting this Ca(2+) to the heme crevice that involves the distal water. The measured effects of Ca(2)(+) depletion can be interpreted as supporting a structural role for the distal Ca(2+) and for its enhanced significance in finetuning the protein structure to optimize enzyme activity.


Journal of Cerebral Blood Flow and Metabolism | 2015

A novel SPECT-based approach reveals early mechanisms of central and peripheral inflammation after cerebral ischemia.

Krisztián Szigeti; Ildiko Horvath; Dániel S. Veres; Bernadett Martinecz; Nikolett Lénárt; Noémi Kovács; Erika Bakcsa; Alexa Marta; Mariann Semjeni; Domokos Máthé; Adam Denes

Inflammation that develops in the brain and peripheral organs after stroke contributes profoundly to poor outcome of patients. However, mechanisms through which inflammation impacts on brain injury and overall outcome are improperly understood, in part because the earliest inflammatory events after brain injury are not revealed by current imaging tools. Here, we show that single-photon emission computed tomography (NanoSPECT/CT Plus) allows visualization of blood brain barrier (BBB) injury after experimental stroke well before changes can be detected with magnetic resonance imaging (MRI). Early 99mTc-DTPA (diethylene triamine pentaacetic acid) signal changes predict infarct development and systemic inflammation preceding experimental stroke leads to very early perfusion deficits and increased BBB injury within 2 hours after the onset of ischemia. Acute brain injury also leads to peripheral inflammation and immunosuppression, which contribute to poor outcome of stroke patients. The SPECT imaging revealed early (within 2 hours) changes in perfusion, barrier function and inflammation in the lungs and the gut after experimental stroke, with good predictive value for the development of histopathologic changes at later time points. Collectively, visualization of early inflammatory changes after stroke could open new translational research avenues to elucidate the interactions between central and peripheral inflammation and to evaluate in vivo ‘multi-system’ effects of putative anti-inflammatory treatments.


European Journal of Pharmaceutics and Biopharmaceutics | 2015

Preformulation studies and optimization of sodium alginate based floating drug delivery system for eradication of Helicobacter pylori.

Péter Diós; Sándor Nagy; Szilárd Pál; Tivadar Pernecker; Béla Kocsis; Ferenc Budán; Ildiko Horvath; Krisztián Szigeti; Kata Bölcskei; Domokos Máthé; A. Dévay

The aim of this study was to design a local, floating, mucoadhesive drug delivery system containing metronidazole for Helicobacter pylori eradication. Face-centered central composite design (with three factors, in three levels) was used for evaluation and optimization of in vitro floating and dissolution studies. Sodium alginate (X1), low substituted hydroxypropyl cellulose (L-HPC B1, X2) and sodium bicarbonate (X3) concentrations were the independent variables in the development of effervescent floating tablets. All tablets showed acceptable physicochemical properties. Statistical analysis revealed that tablets with 5.00% sodium alginate, 38.63% L-HPC B1 and 8.45% sodium bicarbonate content showed promising in vitro floating and dissolution properties for further examinations. Optimized floating tablets expressed remarkable floating force. Their in vitro dissolution studies were compared with two commercially available non-floating metronidazole products and then microbiologically detected dissolution, ex vivo detachment force, rheological mucoadhesion studies and compatibility studies were carried out. Remarkable similarity (f1, f2) between in vitro spectrophotometrically and microbiologically detected dissolutions was found. Studies revealed significant ex vivo mucoadhesion of optimized tablets, which was considerably increased by L-HPC. In vivo X-ray CT studies of optimized tablets showed 8h gastroretention in rats represented by an animation prepared by special CT technique.

Collaboration


Dive into the Krisztián Szigeti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge