Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Krithivasan Sankaranarayanan is active.

Publication


Featured researches published by Krithivasan Sankaranarayanan.


Nature Communications | 2015

Subsistence strategies in traditional societies distinguish gut microbiomes

Alexandra J. Obregon-Tito; Raul Y. Tito; Jessica L. Metcalf; Krithivasan Sankaranarayanan; Jose C. Clemente; Luke K. Ursell; Zhenjiang Zech Xu; Will Van Treuren; Rob Knight; Patrick M. Gaffney; Paul Spicer; Paul A. Lawson; Luis Marin-Reyes; Omar Trujillo-Villarroel; Morris W. Foster; Emilio Guija-Poma; Luzmila Troncoso-Corzo; Christina Warinner; Andrew T. Ozga; Cecil M. Lewis

Recent studies suggest that gut microbiomes of urban-industrialized societies are different from those of traditional peoples. Here we examine the relationship between lifeways and gut microbiota through taxonomic and functional potential characterization of faecal samples from hunter-gatherer and traditional agriculturalist communities in Peru and an urban-industrialized community from the US. We find that in addition to taxonomic and metabolic differences between urban and traditional lifestyles, hunter-gatherers form a distinct sub-group among traditional peoples. As observed in previous studies, we find that Treponema are characteristic of traditional gut microbiomes. Moreover, through genome reconstruction (2.2–2.5 MB, coverage depth × 26–513) and functional potential characterization, we discover these Treponema are diverse, fall outside of pathogenic clades and are similar to Treponema succinifaciens, a known carbohydrate metabolizer in swine. Gut Treponema are found in non-human primates and all traditional peoples studied to date, suggesting they are symbionts lost in urban-industrialized societies.


Scientific Reports | 2015

Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification

Kirsten Ziesemer; Allison E. Mann; Krithivasan Sankaranarayanan; Hannes Schroeder; Andrew T. Ozga; Bernd W. Brandt; Egija Zaura; Andrea L. Waters-Rist; Menno Hoogland; Domingo C. Salazar-García; Mark Aldenderfer; Camilla Speller; Jessica Hendy; Darlene A. Weston; Sandy J. MacDonald; Gavin H. Thomas; Matthew J. Collins; Cecil M. Lewis; Corinne L. Hofman; Christina Warinner

To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341–534) of this gene has been suggested as an excellent candidate for ancient DNA amplification and microbial community reconstruction. However, in practice this metataxonomic approach often produces highly skewed taxonomic frequency data. In this study, we use non-targeted (shotgun metagenomics) sequencing methods to better understand skewed microbial profiles observed in four ancient dental calculus specimens previously analyzed by amplicon sequencing. Through comparisons of microbial taxonomic counts from paired amplicon (V3 U341F/534R) and shotgun sequencing datasets, we demonstrate that extensive length polymorphisms in the V3 region are a consistent and major cause of differential amplification leading to taxonomic bias in ancient microbiome reconstructions based on amplicon sequencing. We conclude that systematic amplification bias confounds attempts to accurately reconstruct microbiome taxonomic profiles from 16S rRNA V3 amplicon data generated using universal primers. Because in silico analysis indicates that alternative 16S rRNA hypervariable regions will present similar challenges, we advocate for the use of a shotgun metagenomics approach in ancient microbiome reconstructions.


Current Opinion in Genetics & Development | 2016

Insights into human evolution from ancient and contemporary microbiome studies

Stephanie L. Schnorr; Krithivasan Sankaranarayanan; Cecil M. Lewis; Christina Warinner

Over the past decade, human microbiome research has energized the study of human evolution through a complete shift in our understanding of what it means to be human. The microbiome plays a pivotal role in human biology, performing key functions in digestion, mood and behavior, development and immunity, and a range of acute and chronic diseases. It is therefore critical to understand its evolution and changing ecology through time. Here we review recent findings on the microbiota of diverse human populations, non-human primates, and past human populations and discuss the implications of this research in formulating a deeper evolutionary understanding of the human holobiont.


American Journal of Physical Anthropology | 2016

Successful enrichment and recovery of whole mitochondrial genomes from ancient human dental calculus

Andrew T. Ozga; Maria A Nieves-Colon; Tanvi P. Honap; Krithivasan Sankaranarayanan; Courtney A. Hofman; George R. Milner; Cecil M. Lewis; Anne C. Stone; Christina Warinner

ABSTRACT Objectives Archaeological dental calculus is a rich source of host‐associated biomolecules. Importantly, however, dental calculus is more accurately described as a calcified microbial biofilm than a host tissue. As such, concerns regarding destructive analysis of human remains may not apply as strongly to dental calculus, opening the possibility of obtaining human health and ancestry information from dental calculus in cases where destructive analysis of conventional skeletal remains is not permitted. Here we investigate the preservation of human mitochondrial DNA (mtDNA) in archaeological dental calculus and its potential for full mitochondrial genome (mitogenome) reconstruction in maternal lineage ancestry analysis. Materials and Methods Extracted DNA from six individuals at the 700‐year‐old Norris Farms #36 cemetery in Illinois was enriched for mtDNA using in‐solution capture techniques, followed by Illumina high‐throughput sequencing. Results Full mitogenomes (7–34×) were successfully reconstructed from dental calculus for all six individuals, including three individuals who had previously tested negative for DNA preservation in bone using conventional PCR techniques. Mitochondrial haplogroup assignments were consistent with previously published findings, and additional comparative analysis of paired dental calculus and dentine from two individuals yielded equivalent haplotype results. All dental calculus samples exhibited damage patterns consistent with ancient DNA, and mitochondrial sequences were estimated to be 92–100% endogenous. DNA polymerase choice was found to impact error rates in downstream sequence analysis, but these effects can be mitigated by greater sequencing depth. Discussion Dental calculus is a viable alternative source of human DNA that can be used to reconstruct full mitogenomes from archaeological remains. Am J Phys Anthropol 160:220–228, 2016.


Current Biology | 2015

Gut Microbiome Diversity among Cheyenne and Arapaho Individuals from Western Oklahoma

Krithivasan Sankaranarayanan; Andrew T. Ozga; Christina Warinner; Raul Y. Tito; Alexandra J. Obregon-Tito; Jiawu Xu; Patrick M. Gaffney; Lori L. Jervis; Derrell W. Cox; Lancer Stephens; Morris W. Foster; Gloria Tallbull; Paul Spicer; Cecil M. Lewis

Existing studies characterizing gut microbiome variation in the United States suffer from population ascertainment biases, with individuals of American Indian ancestry being among the most underrepresented. Here, we describe the first gut microbiome diversity study of an American Indian community. We partnered with the Cheyenne and Arapaho (C&A), federally recognized American Indian tribes in Oklahoma, and compared gut microbiome diversity and metabolic function of C&A participants to individuals of non-native ancestry in Oklahoma (NNIs). While the C&A and NNI participants share microbiome features common to industrialized populations, the C&A participants had taxonomic profiles characterized by a reduced abundance of the anti-inflammatory bacterial genus Faecalibacterium, along with a fecal metabolite profile similar to dysbiotic states described for metabolic disorders. American Indians are known to be at elevated risk for metabolic disorders. While many aspects of this health disparity remain poorly understood, our results support the need to further study the microbiome as a contributing factor. As the field of microbiome research transitions to therapeutic interventions, it raises concerns that the continued exclusion and lack of participation of American Indian communities in these studies will further exacerbate health disparities. To increase momentum in fostering these much needed partnerships, it is essential that the scientific community actively engage in and recruit these vulnerable populations in basic research through a strategy that promotes mutual trust and understanding, as outlined in this study.


American Journal of Physical Anthropology | 2016

Oral microbiome diversity among Cheyenne and Arapaho individuals from Oklahoma.

Andrew T. Ozga; Krithivasan Sankaranarayanan; Raul Y. Tito; Alexandra J. Obregon-Tito; Morris W. Foster; Gloria Tallbull; Paul Spicer; Christina Warinner; Cecil M. Lewis

OBJECTIVES There is a major ascertainment bias in microbiome research, with individuals of predominately European ancestry living within metropolitan areas dominating most studies. Here we present a study of the salivary microbiome within a North American Indian community. This research is the culmination of four years of collaboration and community engagement with Cheyenne & Arapaho (C&A) tribal members from western Oklahoma. MATERIALS AND METHODS Using 16S rRNA gene amplification and next-generation sequencing, we generated microbial taxonomic inventories for 37 individuals representing five towns within the C&A tribes. For comparison, we performed the same laboratory techniques on saliva samples from 20 non-native individuals (NNI) from Norman, Oklahoma. RESULTS The C&A participants differ from the NNI in having reduced within-individual species richness and higher between-individual variation. Unsupervised clustering analyses reveal that three ecological groupings best fit the data, and while C&A individuals include assignments to all three groups, the NNI individuals are assigned to only one group. One of the ecological groups found exclusively among C&A participants was characterized by high abundance of the oral bacterial genus Prevotella. DISCUSSION The C&A and NNI participants from Oklahoma have notable differences in their microbiome diversity, with a wider range of variation observed among the C&A individuals, including a higher frequency of bacteria implicated in systemic disorders. Overall, this study highlights the importance of engagement with indigenous communities, and the need for an improved understanding of human microbiome diversity among underrepresented groups and those individuals living outside of metropolitan areas.


bioRxiv | 2018

Biogeographic study of human gut associated crAssphage suggests impacts from industrialization and recent expansion.

Tanvi P Honap; Krithivasan Sankaranarayanan; Stephanie L. Schnorr; Andrew T. Ozga; Christina Warinner; Cecil M. Lewis

CrAssphage (cross-assembly phage) is a bacteriophage that was first discovered in human gut metagenomic data. CrAssphage belongs to a diverse family of crAss-like bacteriophages thought to infect gut commensal bacteria belonging to Bacteroides species. However, not much is known about the biogeography of crAssphage and whether certain strains are associated with specific human populations. In this study, we screened publicly available human gut metagenomic data from 3,341 samples for the presence of crAssphage sensu stricto (NC_024711.1). We found that crAssphage prevalence is low in traditional, hunter-gatherer populations, such as the Hadza from Tanzania and Matses from Peru, as compared to industrialized, urban populations. Statistical comparisons showed no association of crAssphage prevalence with variables such as age, sex, body mass index, and health status of individuals. Phylogenetic analyses show that crAssphage strains reconstructed from the same individual over multiple time-points, cluster together. CrAssphage strains from individuals from the same study population do not always cluster together. Some evidence of clustering is seen at the level of broadly defined geographic regions, however, the relative positions of these clusters within the crAssphage phylogeny are not well-supported. We hypothesize that this lack of strong biogeographic structuring is suggestive of a recent expansion event within crAssphage. Using a Bayesian dating approach, we estimate this expansion has occurred within the past 200 years. Overall, we determine that crAssphage presence is associated with an industrialized lifestyle. The absence of strong biogeographic structuring within global crAssphage strains is likely due to a recent population expansion within this bacteriophage.


Metabolomics | 2017

The dental calculus metabolome in modern and historic samples

Irina Marie Velsko; Katherine A. Overmyer; Camilla Speller; Lauren Klaus; Matthew J. Collins; Louise Loe; Laurent A. F. Frantz; Krithivasan Sankaranarayanan; Cecil M. Lewis; Juan Bautista Rodriguez Martinez; Eros Chaves; Joshua J. Coon; Greger Larson; Christina Warinner


Scientific Reports | 2018

Differential preservation of endogenous human and microbial DNA in dental calculus and dentin

Allison E. Mann; Susanna Sabin; Kirsten Ziesemer; Åshild J. Vågene; Hannes Schroeder; Andrew T. Ozga; Krithivasan Sankaranarayanan; Courtney A. Hofman; James A. Fellows Yates; Domingo C. Salazar-García; Bruno Frohlich; Mark Aldenderfer; Menno Hoogland; Christopher Read; George R. Milner; Anne C. Stone; Cecil M. Lewis; Johannes Krause; Corinne L. Hofman; Kirsten I. Bos; Christina Warinner


The 86th Annual Meeting of the American Association of Physical Anthropologists, New Orleans | 2017

Whole human genome enrichment on dental calculus

Kirsten Ziesemer; Jazmin Ramos Madrigal; Allison E. Mann; Krithivasan Sankaranarayanan; Christina Warinner; Corinne L. Hofman; Hannes Schroeder

Collaboration


Dive into the Krithivasan Sankaranarayanan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge