Kruthi Murthy
University of Texas Health Science Center at San Antonio
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kruthi Murthy.
Cancer Research | 2012
Vincent Hurez; Benjamin J. Daniel; Lishi Sun; Ai Jie Liu; Sara M. Ludwig; Mark Kious; Suzanne R. Thibodeaux; Srilakshmi Pandeswara; Kruthi Murthy; Carolina B. Livi; Shawna Wall; Michael J. Brumlik; Tahiro Shin; Bin Zhang; Tyler J. Curiel
Although cancer tends to affect the elderly, most preclinical studies are carried out in young subjects. In this study, we developed a melanoma-specific cancer immunotherapy that shows efficacy in aged but not young hosts by mitigating age-specific tumor-associated immune dysfunction. Both young and aged CD4(+)CD25(hi) regulatory T cells (Treg) exhibited equivalent in vitro T-cell suppression and tumor-associated augmentation in numbers. However, denileukin diftitox (DT)-mediated Treg depletion improved tumor-specific immunity and was clinically effective only in young mice. DT-mediated Treg depletion significantly increased myeloid-derived suppressor cell (MDSC) numbers in aged but not young mice, and MDSC depletion improved tumor-specific immunity and reduced tumor growth in aged mice. Combining Treg depletion with anti-Gr-1 antibody was immunologically and clinically more efficacious than anti-Gr-1 antibody alone in aged B16-bearing mice, similar to Treg depletion alone in young mice. In contrast, DT increased MDSCs in young and aged mice following MC-38 tumor challenge, although effects were greater in aged mice. Anti-Gr-1 boosted DT effects in young but not aged mice. Aged antitumor immune effector cells are therefore competent to combat tumor when underlying tumor-associated immune dysfunction is appropriately mitigated, but this dysfunction varies with tumor, thus also varying responses to immunotherapy. By tailoring immunotherapy to account for age-related tumor-associated immune dysfunctions, cancer immunotherapy for aged patients with specific tumors can be remarkably improved.
Cancer Research | 2016
Curtis A. Clark; Gangadhara Reddy Sareddy; Srilakshmi Pandeswara; Shunhua Lao; Bin Yuan; Justin M. Drerup; Álvaro Padrón; Jose R. Conejo-Garcia; Kruthi Murthy; Yang Liu; Mary Jo Turk; Kathrin Thedieck; Vincent Hurez; Rong Li; Ratna K. Vadlamudi; Tyler J. Curiel
PD-L1 antibodies produce efficacious clinical responses in diverse human cancers, but the basis for their effects remains unclear, leaving a gap in the understanding of how to rationally leverage therapeutic activity. PD-L1 is widely expressed in tumor cells, but its contributions to tumor pathogenicity are incompletely understood. In this study, we evaluated the hypothesis that PD-L1 exerts tumor cell-intrinsic signals that are critical for pathogenesis. Using RNAi methodology, we attenuated PD-L1 in the murine ovarian cell line ID8agg and the melanoma cell line B16 (termed PD-L1lo cells), which express basal PD-L1. We observed that PD-L1lo cells proliferated more weakly than control cells in vitro As expected, PD-L1lo cells formed tumors in immunocompetent mice relatively more slowly, but unexpectedly, they also formed tumors more slowly in immunodeficient NSG mice. RNA sequencing analysis identified a number of genes involved in autophagy and mTOR signaling that were affected by PD-L1 expression. In support of a functional role, PD-L1 attenuation augmented autophagy and blunted the ability of autophagy inhibitors to limit proliferation in vitro and in vivo in NSG mice. PD-L1 attenuation also reduced mTORC1 activity and augmented the antiproliferative effects of the mTORC1 inhibitor rapamycin. PD-L1lo cells were also relatively deficient in metastasis to the lung, and we found that anti-PD-L1 administration could block tumor cell growth and metastasis in NSG mice. This therapeutic effect was observed with B16 cells but not ID8agg cells, illustrating tumor- or compartmental-specific effects in the therapeutic setting. Overall, our findings extend understanding of PD-L1 functions, illustrate nonimmune effects of anti-PD-L1 immunotherapy, and suggest broader uses for PD-L1 as a biomarker for assessing cancer therapeutic responses. Cancer Res; 76(23); 6964-74. ©2016 AACR.
Aging Cell | 2012
Lishi Sun; Vincent Hurez; Suzanne R. Thibodeaux; Mark Kious; Aijie Liu; Pei-Yi Lin; Kruthi Murthy; Srilakshmi Pandeswara; Tahiro Shin; Tyler J. Curiel
Regulatory T cells (Tregs) are specialized CD4+ T lymphocytes helping defend against autoimmunity and inflammation. Although age is associated with increased inflammation and autoimmunity, few reports address age effects of immune regulation or auto‐aggressive T cells. We show here that young and aged naïve CD4+ T cells are equivalently auto‐aggressive in vivo in T cell‐driven autoimmune colitis. Young and aged CD4+ Tregs equally suppressed age‐matched T cell proliferation in vitro and controlled clinical and pathologic T cell‐driven autoimmune colitis, suggesting equivalent regulatory function. However, whereas young and aged CD4+ Tregs suppressed interferon (IFN)‐γ+ T cells equivalently in this model, aged CD4+ Tregs unexpectedly failed to restrain interleukin (IL)‐17+ T cells. Nonetheless, young and aged CD4+ Tregs equally restrained IL‐17+ T cells in vivo during acute inflammation, suggesting a chronic inflammation‐related defect in aged CD4+ Tregs. In support, aged Tregs expressed reduced STAT3 activation, a defect associated with poor IL‐17‐producing T cell restraint. Aged naïve mice had markedly increased programmed death (PD)‐1+ T cells, but these exhibited no significant auto‐aggressive or regulatory functions in T cell‐driven colitis. Young CD8+ CD122− T cells induce autoimmune bone marrow failure, but we show that aged CD8+ CD122− T cells do not. These data demonstrate no apparent age‐related increase in auto‐aggressive T cell behavior, but disclose previously unrecognized functional defects in aged CD4+ Tregs during chronic inflammation. IL‐17 can be inflammatory and contributes to certain autoimmune disorders. Reduced aged Treg function during chronic inflammation and reduced IL‐17 restraint could contribute to age‐related inflammation or autoimmunity.
Current Treatment Options in Oncology | 2015
Justin M. Drerup; Yang Liu; Álvaro Padrón; Kruthi Murthy; Vincent Hurez; Bin Zhang; Tyler J. Curiel
Opinion statementAll work referenced herein relates to treatment of epithelial ovarian carcinomas, as their treatment differs from ovarian germ cell cancers and other rare ovarian cancers, the treatments of which are addressed elsewhere. Fallopian tube cancers and primary peritoneal adenocarcinomatosis are also generally treated as epithelial ovarian cancers. The standard of care initial treatment of advanced stage epithelial ovarian cancer is optimal debulking surgery as feasible plus chemotherapy with a platinum plus a taxane agent. If this front-line approach fails, as it too often the case, several FDA-approved agents are available for salvage therapy. However, because no second-line therapy for advanced-stage epithelial ovarian cancer is typically curative, we prefer referral to clinical trials as logistically feasible, even if it means referring patients outside our system. Immune therapy has a sound theoretical basis for treating carcinomas generally, and for treating ovarian cancer in particular. Advances in understanding the immunopathogenic basis of ovarian cancer, and the immunopathologic basis for prior failures of immunotherapy for it and other carcinomas promises to afford novel treatment approaches with potential for significant efficacy, and reduced toxicities compared with cytotoxic agents. Thus, referral to early phase immunotherapy trials for ovarian cancer patients that fail conventional treatment merits consideration.
Cancer Prevention Research | 2014
Paul Hasty; Carolina B. Livi; Sherry G. Dodds; Diane Jones; Randy Strong; Martin A. Javors; Kathleen E. Fischer; Lauren B. Sloane; Kruthi Murthy; Gene B. Hubbard; Lishi Sun; Vincent Hurez; Tyler J. Curiel; Zelton Dave Sharp
Mutation of a single copy of the adenomatous polyposis coli (APC) gene results in familial adenomatous polyposis (FAP), which confers an extremely high risk for colon cancer. ApcMin/+ mice exhibit multiple intestinal neoplasia (MIN) that causes anemia and death from bleeding by 6 months. Mechanistic target of rapamycin complex 1 (mTORC1) inhibitors were shown to improve ApcMin/+ mouse survival when administered by oral gavage or added directly to the chow, but these mice still died from neoplasia well short of a natural life span. The National Institute of Aging Intervention Testing Program showed that enterically targeted rapamycin (eRapa) extended life span for wild-type genetically heterogeneous mice in part by inhibiting age-associated cancer. We hypothesized that eRapa would be effective in preventing neoplasia and extend survival of ApcMin/+ mice. We show that eRapa improved survival of ApcMin/+ mice in a dose-dependent manner. Remarkably, and in contrast to previous reports, most of the ApcMin/+ mice fed 42 parts per million eRapa lived beyond the median life span reported for wild-type syngeneic mice. Furthermore, chronic eRapa did not cause detrimental immune effects in mouse models of cancer, infection, or autoimmunity, thus assuaging concerns that chronic rapamycin treatment suppresses immunity. Our studies suggest that a novel formulation (enteric targeting) of a well-known and widely used drug (rapamycin) can dramatically improve its efficacy in targeted settings. eRapa or other mTORC1 inhibitors could serve as effective cancer preventatives for people with FAP without suppressing the immune system, thus reducing the dependency on surgery as standard therapy. Cancer Prev Res; 7(1); 169–78. ©2013 AACR.
Journal of Signal Transduction | 2011
Michael J. Brumlik; Srilakshmi Pandeswara; Sara M. Ludwig; Kruthi Murthy; Tyler J. Curiel
Protozoan pathogens are a highly diverse group of unicellular organisms, several of which are significant human pathogens. One group of protozoan pathogens includes obligate intracellular parasites such as agents of malaria, leishmaniasis, babesiosis, and toxoplasmosis. The other group includes extracellular pathogens such as agents of giardiasis and amebiasis. An unfortunate unifying theme for most human protozoan pathogens is that highly effective treatments for them are generally lacking. We will review targeting protozoan mitogen-activated protein kinases (MAPKs) as a novel drug discovery approach towards developing better therapies, focusing on Plasmodia, Leishmania, and Toxoplasma, about which the most is known.
Experimental Parasitology | 2013
Michael J. Brumlik; Srilakshmi Pandeswara; Sara M. Ludwig; Duane Jeansonne; Michelle Lacey; Kruthi Murthy; Benjamin J. Daniel; Rong Fu Wang; Suzanne R. Thibodeaux; Kristina M Church; Vincent Hurez; Mark Kious; Bin Zhang; Adebusola Alagbala; Xiaojun Xia; Tyler J. Curiel
The parasite Toxoplasma gondii controls tissue-specific nitric oxide (NO), thereby augmenting virulence and immunopathology through poorly-understood mechanisms. We now identify TgMAPK1, a Toxoplasma mitogen-activated protein kinase (MAPK), as a virulence factor regulating tissue-specific parasite burden by manipulating host interferon (IFN)-γ-mediated inducible nitric oxide synthase (iNOS). Toxoplasma with reduced TgMAPK1 expression (TgMAPK1(lo)) demonstrated that TgMAPK1 facilitates IFN-γ-driven p38 MAPK activation, reducing IFN-γ-generated NO in an MKK3-dependent manner, blunting IFN-γ-mediated parasite control. TgMAPK1(lo) infection in wild type mice produced ≥ten-fold lower parasite burden versus control parasites with normal TgMAPK1 expression (TgMAPK1(con)). Reduced parasite burdens persisted in IFN-γ KO mice, but equalized in normally iNOS-replete organs from iNOS KO mice. Parasite MAPKs are far less studied than other parasite kinases, but deserve additional attention as targets for immunotherapy and drug discovery.
Cellular Immunology | 2014
Annette R. Rodriguez; Vida L. Hodara; Kruthi Murthy; LaShayla Morrow; Melissa Sanchez; Amy E. Bienvenu; Krishna K. Murthy
Interleukin-15 (IL-15) contributes to natural killer cell development and immune regulation. However, IL-15 and interferon-gamma (IFN-γ) production are significantly reduced during progression to AIDS. We have previously reported that HIV infected chimpanzees (Pan troglodytes) express CD3-CD8+ IFN-γ+ natural killer (NK) cells with an inverse correlation to plasma HIV viral load. To expand on our initial study, we examined a larger population of HIV infected chimpanzees (n=10). Whole blood flow cytometry analyses showed that recombinant gp120 (rgp120) or recombinant IL-15 induces specific CD3-CD8+ IFN-γ+ NK cells at higher levels than CD3+CD8+ IFN-γ+ T cells in HIV infected specimens. Interestingly, peripheral blood T cells exhibited 0.5-3% IL-15 surface Tcell/NKT cell phenotypes, and rIL-15 stimulation significantly (P<0.007) up-regulated CD4+CD25+ T cell expression. Importantly, these data demonstrate novel T cell interleukin-15 expression and indicate a plausible regulatory mechanism for this cell-type during viral infection.
Journal of Immunology | 2014
Tyler J. Curiel; Suzanne R. Thibodeaux; Shawna Wall; Sri Lakshmi Pandeswara; Benjamin J. Daniel; Justin M. Drerup; Kruthi Murthy; Ilona Kryczek; Weiping Zou; Brian Barnett
Journal of Immunology | 2012
Tyler J. Curiel; Mark Kious; Lishi Sun; Ratna K. Vadlamudi; Vincent Hurez; Kruthi Murthy
Collaboration
Dive into the Kruthi Murthy's collaboration.
University of Texas Health Science Center at San Antonio
View shared research outputsUniversity of Texas Health Science Center at San Antonio
View shared research outputsUniversity of Texas Health Science Center at San Antonio
View shared research outputsUniversity of Texas Health Science Center at San Antonio
View shared research outputsUniversity of Texas Health Science Center at San Antonio
View shared research outputsUniversity of Texas Health Science Center at San Antonio
View shared research outputs