Krysta Mila Coyle
Dalhousie University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Krysta Mila Coyle.
Neoplasia | 2014
Edward G. Mathenge; Cheryl A. Dean; Derek Clements; Steffany Photopoulos; Krysta Mila Coyle; Michael Giacomantonio; Benjamin Malueth; Anna Nunokawa; J.L. Jordan; John D. Lewis; Shashi Gujar; Paola Marcato; Patrick W.K. Lee; Carman A. Giacomantonio
INTRODUCTION: Incisional biopsies, including the diagnostic core needle biopsy (CNB), routinely performed before surgical excision of breast cancer tumors are hypothesized to increase the risk of metastatic disease. In this study, we experimentally determined whether CNB of breast cancer tumors results in increased distant metastases and examine important resultant changes in the primary tumor and tumor microenvironment associated with this outcome. METHOD: To evaluate the effect of CNB on metastasis development, we implanted murine mammary 4T1 tumor cells in BALB/c mice and performed CNB on palpable tumors in half the mice. Subsequently, emulating the human scenario, all mice underwent complete tumor excision and were allowed to recover, with attendant metastasis development. Tumor growth, lung metastasis, circulating tumor cell (CTC) levels, variation in gene expression, composition of the tumor microenvironment, and changes in immunologic markers were compared in biopsied and non-biopsied mice. RESULTS: Mice with biopsied tumors developed significantly more lung metastases compared to non-biopsied mice. Tumors from biopsied mice contained a higher frequency of myeloid-derived suppressor cells (MDSCs) accompanied by reduced CD4 + T cells, CD8 + T cells, and macrophages, suggesting biopsy-mediated development of an increasingly immunosuppressive tumor microenvironment. We also observed a CNB-dependent up-regulation in the expression of SOX4, Ezh2, and other key epithelial-mesenchymal transition (EMT) genes, as well as increased CTC levels among the biopsy group. CONCLUSION: CNB creates an immunosuppressive tumor microenvironment, increases EMT, and facilitates release of CTCs, all of which likely contribute to the observed increase in development of distant metastases.
Journal of Immunology | 2015
Derek Clements; Andra Sterea; Youra Kim; Erin Helson; Cheryl A. Dean; Anna Nunokawa; Krysta Mila Coyle; Tanveer Sharif; Paola Marcato; Shashi Gujar; Patrick W.K. Lee
Tumor-associated immunosuppression aids cancer cells to escape immune-mediated attack and subsequent elimination. Recently, however, many oncolytic viruses, including reovirus, have been reported to overturn such immunosuppression and promote the development of a clinically desired antitumor immunity, which is known to promote favorable patient outcomes. Contrary to this existing paradigm, in this article we demonstrate that reovirus augments tumor-associated immunosuppression immediately following its therapeutic administration. Our data show that reovirus induces preferential differentiation of highly suppressive CD11b+, Gr-1+, Ly6Chigh myeloid cells from bone marrow hematopoietic progenitor cells. Furthermore, reovirus administration in tumor-bearing hosts drives time-dependent recruitment of CD11b+, Gr-1+, Ly6Chigh myeloid cells in the tumor milieu, which is further supported by virus-induced increased expression of numerous immune factors involved in myeloid-derived suppressor cell survival and trafficking. Most importantly, CD11b+, Gr-1+, Ly6Chigh myeloid cells specifically potentiate the suppression of T cell proliferation and are associated with the absence of IFN-γ response in the tumor microenvironment early during oncotherapy. Considering that the qualitative traits of a specific antitumor immunity are largely dictated by the immunological events that precede its development, our findings are of critical importance and must be considered while devising complementary interventions aimed at promoting the optimum efficacy of oncolytic virus–based anticancer immunotherapies.
Chemotherapy: Open Access | 2014
Margaret L. Thomas; Krysta Mila Coyle; Mohammad Sultan; Paola Marcato
In cancers, there exists a subpopulation of cells which are referred to as cancer stem cells (CSCs) or tumor initiating cells that have enhanced tumor-initiating capacity and metastatic potential, and drive tumor progression. Since the initial identification of acute myeloid leukemia CSCs in 1997, CSCs have been found in many types of cancer and have intrinsic resistance to the current chemotherapeutic strategies. With increased levels of detoxifying enzymes, enhanced DNA repair abilities, impressive efflux capacity, and a slower cell-cycle; CSCs present a formidable obstacle against effective chemotherapy. Several methods of specifically targeting CSCs have been developed in recent years, and these compounds have potential as adjuvant therapies. The following is a review of the mechanisms responsible for chemoresistance in CSCs, with an emphasis on potential strategies to overcome this resistance.
Journal of carcinogenesis & mutagenesis | 2013
Krysta Mila Coyle; Mohammad Sultan; Margaret L. Thomas; Ahmad Vagar-Kashani; Paola Marcato
Deregulated signal transduction is a major facet of cancer development and progression. Herein, we review the current paradigm for retinoic acid signaling, its role in cancer and potential therapeutic applications and challenges. Retinoic acid is used with remarkable success in the treatment of one of the most high-risk leukemias, acute promyelocytic leukemia; however, extending its use in the treatment of other cancers has had limited success at best. Functional studies provide clues for the poor performance of retinoic acid as a general cancer therapeutic, connecting retinoic acid signaling to both cell growth arrest and proliferation with tumor suppression and cancer progression consequences. The dualistic role of the retinoic acid signaling pathway in cancer is revealed in its gene transcription targets, cross-talk with other transcription factors, mediation of apoptotic pathways, and influence in the immune system. If the greatest potential benefit of retinoid-based cancer therapeutics is to be achieved, the many physiological roles of retinoic acid need to be considered.
Oncotarget | 2016
Krysta Mila Coyle; J. Patrick Murphy; Dejan Vidovic; Cheryl A. Dean; Mohammad Sultan; Derek Clements; Melissa Wallace; Margaret L. Thomas; Amos S. Hundert; Carman A. Giacomantonio; Lucy Helyer; Shashi Gujar; Patrick W.K. Lee; Ian C. G. Weaver; Paola Marcato
Breast cancer subtyping, based on the expression of hormone receptors and other genes, can determine patient prognosis and potential options for targeted therapy. Among breast cancer subtypes, tumors of basal-like and claudin-low subtypes are typically associated with worse patient outcomes, are primarily classified as triple-negative breast cancers (TNBC), and cannot be treated with existing hormone-receptor-targeted therapies. Understanding the molecular basis of these subtypes will lead to the development of more effective treatment options for TNBC. In this study, we focus on retinoic acid receptor responder 1 (RARRES1) as a paradigm to determine if breast cancer subtype dictates protein function and gene expression regulation. Patient tumor dataset analysis and gene expression studies of a 26 cell-line panel, representing the five breast cancer subtypes, demonstrate that RARRES1 expression is greatest in basal-like TNBCs. Cell proliferation and tumor growth assays reveal that RARRES1 is a tumor suppressor in TNBC. Furthermore, gene expression studies, Illumina HumanMethylation450 arrays, and chromatin immunoprecipitation demonstrate that expression of RARRES1 is retained in basal-like breast cancers due to hypomethylation of the promoter. Additionally, expression of the cancer stem cell marker, aldehyde dehydrogenase 1A3, which provides the required ligand (retinoic acid) for RARRES1 transcription, is also specific to the basal-like subtype. We functionally demonstrate that the combination of promoter methylation and retinoic acid signaling dictates expression of tumor suppressor RARRES1 in a subtype-specific manner. These findings provide a precedent for a therapeutically-inducible tumor suppressor and suggest novel avenues of therapeutic intervention for patients with basal-like breast cancer.
Carcinogenesis | 2017
Mohammad Sultan; Krysta Mila Coyle; Dejan Vidovic; Margaret L. Thomas; Shashi Gujar; Paola Marcato
The enhanced ability of cancer stem cells (CSCs) to give rise to new tumors suggests that these cells may also have an advantage in evading immune detection and elimination. This tumor-forming ability, combined with the known plasticity of the immune system, which can play both protumorigenic and antitumorigenic roles, has motivated investigations into the interaction between CSCs and the immune system. Herein, we review the interplay between host immunity and CSCs by examining the immune-related mechanisms that favor CSCs and the CSC-mediated expansion of protumorigenic immune cells. Furthermore, we discuss immune cells, such as natural killer cells, that preferentially target CSCs and the strategies used by CSCs to evade immune detection and destruction. An increased understanding of these interactions and the pathways that regulate them may allow us to harness immune system components to create new adjuvant therapies that eradicate CSCs and improve patient survival.
Molecular Oncology | 2016
Margaret L. Thomas; Roberto de Antueno; Krysta Mila Coyle; Mohammad Sultan; Brianne Cruickshank; Michael Anthony Giacomantonio; Carman A. Giacomantonio; Roy Duncan; Paola Marcato
Breast cancer stem cells (CSCs) can be identified by increased Aldefluor fluorescence caused by increased expression of aldehyde dehydrogenase 1A3 (ALDH1A3), as well as ALDH1A1 and ALDH2. In addition to being a CSC marker, ALDH1A3 regulates gene expression via retinoic acid (RA) signaling and plays a key role in the progression and chemotherapy resistance of cancer. Therefore, ALDH1A3 represents a druggable anti‐cancer target of interest. Since to date, there are no characterized ALDH1A3 isoform inhibitors, drugs that were previously described as inhibiting the activity of other ALDH isoforms were tested for anti‐ALDH1A3 activity. Twelve drugs (3‐hydroxy‐dl‐kynurenine, benomyl, citral, chloral hydrate, cyanamide, daidzin, DEAB, disulfiram, gossypol, kynurenic acid, molinate, and pargyline) were compared for their efficacy in inducing apoptosis and reducing ALDH1A3, ALDH1A1 and ALDH2‐associated Aldefluor fluorescence in breast cancer cells. Citral was identified as the best inhibitor of ALDH1A3, reducing the Aldefluor fluorescence in breast cancer cell lines and in a patient‐derived tumor xenograft. Nanoparticle encapsulated citral specifically reduced the enhanced tumor growth of MDA‐MB‐231 cells overexpressing ALDH1A3. To determine the potential mechanisms of citral‐mediated tumor growth inhibition, we performed cell proliferation, clonogenic, and gene expression assays. Citral reduced ALDH1A3‐mediated colony formation and expression of ALDH1A3‐inducible genes. In conclusion, citral is an effective ALDH1A3 inhibitor and is able to block ALDH1A3‐mediated breast tumor growth, potentially via blocking its colony forming and gene expression regulation activity. The promise of ALDH1A3 inhibitors as adjuvant therapies for patients with tumors that have a large population of high‐ALDH1A3 CSCs is discussed.
BioMed Research International | 2017
Krysta Mila Coyle; Jeanette E. Boudreau; Paola Marcato
Cancer treatment is undergoing a significant revolution from “one-size-fits-all” cytotoxic therapies to tailored approaches that precisely target molecular alterations. Precision strategies for drug development and patient stratification, based on the molecular features of tumors, are the next logical step in a long history of approaches to cancer therapy. In this review, we discuss the history of cancer treatment from generic natural extracts and radical surgical procedures to site-specific and combinatorial treatment regimens, which have incrementally improved patient outcomes. We discuss the related contributions of genetics and epigenetics to cancer progression and the response to targeted therapies and identify challenges and opportunities for the success of precision medicine. The identification of patients who will benefit from targeted therapies is more complex than simply identifying patients whose tumors harbour the targeted aberration, and intratumoral heterogeneity makes it difficult to determine if a precision therapy is successful during treatment. This heterogeneity enables tumors to develop resistance to targeted approaches; therefore, the rational combination of therapeutic agents will limit the threat of acquired resistance to therapeutic success. By incorporating the view of malignant transformation modulated by networks of genetic and epigenetic interactions, molecular strategies will enable precision medicine for effective treatment across cancer subtypes.
Stem Cells | 2018
Mohammad Sultan; Dejan Vidovic; Arianne S. Paine; Thomas Tan Huynh; Krysta Mila Coyle; Margaret L. Thomas; Brianne Cruickshank; Cheryl A. Dean; Derek Clements; Youra Kim; Kristen Lee; Shashi Gujar; Ian C. G. Weaver; Paola Marcato
Avoiding detection and destruction by immune cells is key for tumor initiation and progression. The important role of cancer stem cells (CSCs) in tumor initiation has been well established, yet their ability to evade immune detection and targeting is only partly understood. To investigate the ability of breast CSCs to evade immune detection, we identified a highly tumorigenic population in a spontaneous murine mammary tumor based on increased aldehyde dehydrogenase activity. We performed tumor growth studies in immunocompetent and immunocompromised mice. In immunocompetent mice, growth of the spontaneous mammary tumor was restricted; however, the Aldefluor+ population was expanded, suggesting inherent resistance mechanisms. Gene expression analysis of the sorted tumor cells revealed that the Aldefluor+ tumor cells has decreased expression of transporter associated with antigen processing (TAP) genes and co‐stimulatory molecule CD80, which would decrease susceptibility to T cells. Similarly, the Aldefluor+ population of patient tumors and 4T1 murine mammary cells had decreased expression of TAP and co‐stimulatory molecule genes. In contrast, breast CSCs identified by CD44+CD24− do not have decreased expression of these genes, but do have increased expression of C‐X‐C chemokine receptor type 4. Decitabine treatment and bisulfite pyrosequencing suggests that DNA hypermethylation contributes to decreased TAP gene expression in Aldefluor+ CSCs. TAP1 knockdown resulted in increased tumor growth of 4T1 cells in immunocompetent mice. Together, this suggests immune evasion mechanisms in breast CSCs are marker specific and epigenetic silencing of TAP1 in Aldefluor+ breast CSCs contributes to their enhanced survival under immune pressure. Stem Cells 2018;36:641–654
Scientific Reports | 2017
Krysta Mila Coyle; Selena Maxwell; Margaret L. Thomas; Paola Marcato
Retinoids, derivatives of vitamin A, are key physiological molecules with regulatory effects on cell differentiation, proliferation and apoptosis. As a result, they are of interest for cancer therapy. Specifically, models of breast cancer have varied responses to manipulations of retinoid signaling. This study characterizes the transcriptional response of MDA-MB-231 and MDA-MB-468 breast cancer cells to retinaldehyde dehydrogenase 1A3 (ALDH1A3) and all-trans retinoic acid (atRA). We demonstrate limited overlap between ALDH1A3-induced gene expression and atRA-induced gene expression in both cell lines, suggesting that the function of ALDH1A3 in breast cancer progression extends beyond its role as a retinaldehyde dehydrogenase. Our data reveals divergent transcriptional responses to atRA, which are largely independent of genomic retinoic acid response elements (RAREs) and consistent with the opposing responses of MDA-MB-231 and MDA-MB-468 to in vivo atRA treatment. We identify transcription factors associated with each gene set. Manipulation of the IRF1 transcription factor demonstrates that it is the level of atRA-inducible and epigenetically regulated transcription factors that determine expression of target genes (e.g. CTSS, cathepsin S). This study provides a paradigm for complex responses of breast cancer models to atRA treatment, and illustrates the need to characterize RARE-independent responses to atRA in a variety of models.