Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Krystal A. Tolley is active.

Publication


Featured researches published by Krystal A. Tolley.


Molecular Ecology | 2006

Biogeographic patterns and phylogeography of dwarf chameleons ( Bradypodion ) in an African biodiversity hotspot

Krystal A. Tolley; Marius Burger; Andrew A. Turner; Conrad A. Matthee

The southern African landscape appears to have experienced frequent shifts in vegetation associated with climatic change through the mid‐Miocene and Plio–Pleistocene. One group whose historical biogeography may have been affected by these fluctuations are the dwarf chameleons (Bradypodion), due to their associations with distinct vegetation types. Thus, this group provides an opportunity to investigate historical biogeography in light of climatic fluctuations. A total of 138 dwarf chameleons from the Cape Floristic Region of South Africa were sequenced for two mitochondrial genes (ND2 and 16S), and resulting phylogenetic analyses showed two well‐supported clades that are distributed allopatrically. Within clades, diversity among some lineages was low, and haplotype networks showed patterns of reticulate evolution and incomplete lineage sorting, suggesting relatively recent origins for some of these lineages. A dispersal‐vicariance analysis and a relaxed Bayesian clock suggest that vicariance between the two main clades occurred in the mid‐Miocene, and that both dispersal and vicariance have played a role in shaping present‐day distributions. These analyses also suggest that the most recent series of lineage diversification events probably occurred within the last 3–6 million years. This suggests that the origins of many present‐day lineages were founded in the Plio–Pleistocene, a time period that corresponds to the reduction of forests in the region and the establishment of the fynbos biome.


Proceedings of the Royal Society of London B: Biological Sciences | 2013

Large-scale phylogeny of chameleons suggests African origins and Eocene diversification

Krystal A. Tolley; Ted M. Townsend; Miguel Vences

Oceanic dispersal has emerged as an important factor contributing to biogeographic patterns in numerous taxa. Chameleons are a clear example of this, as they are primarily found in Africa and Madagascar, but the age of the family is post-Gondwanan break-up. A Malagasy origin for the family has been suggested, yet this hypothesis has not been tested using modern biogeographic methods with a dated phylogeny. To examine competing hypotheses of African and Malagasy origins, we generated a dated phylogeny using between six and 13 genetic markers, for up to 174 taxa representing greater than 90 per cent of all named species. Using three different ancestral-state reconstruction methods (Bayesian and likelihood approaches), we show that the family most probably originated in Africa, with two separate oceanic dispersals to Madagascar during the Palaeocene and the Oligocene, when prevailing oceanic currents would have favoured eastward dispersal. Diversification of genus-level clades took place in the Eocene, and species-level diversification occurred primarily in the Oligocene. Plio-Pleistocene speciation is rare, resulting in a phylogeny dominated by palaeo-endemic species. We suggest that contraction and fragmentation of the Pan-African forest coupled to an increase in open habitats (savannah, grassland, heathland), since the Oligocene played a key role in diversification of this group through vicariance.


Molecular Phylogenetics and Evolution | 2004

Phylogenetics of the southern African dwarf chameleons, Bradypodion (Squamata: Chamaeleonidae)

Krystal A. Tolley; Colin R. Tilbury; William R. Branch; Conrad A. Matthee

The taxonomic relationships within the dwarf chameleons (Bradypodion) of southern Africa have long been controversial. Although informal phenotypic groups have been suggested, the evolutionary relationships among the 15 recognised species in southern Africa have not been previously investigated. To investigate the relationships among species within this genus, fragments of two mitochondrial genes (16S ribosomal RNA and ND2) were sequenced and analysed using maximum parsimony, maximum likelihood and Bayesian inference. All analyses showed congruent topologies, revealing at least 5 well-supported clades distributed across distinct geographic regions. The mtDNA gene tree indicated that in many instances, geographic location has played a role in shaping the evolution of this group, and that the previously suggested phenotypic groupings do not adequately reflect evolutionary relationships. Furthermore, it appears that some of the currently recognised species (described on morphology) are polyphyletic for mitochondrial sequences, most notably those occurring in the isolated forest patches of north-eastern South Africa, near the Drakensberg Escarpment.


Biology Letters | 2011

Eastward from Africa: palaeocurrent-mediated chameleon dispersal to the Seychelles islands

Ted M. Townsend; Krystal A. Tolley; Frank Glaw; Wolfgang Böhme; Miguel Vences

Madagascar and the Seychelles are Gondwanan remnants currently isolated in the Indian Ocean. In the Late Cretaceous, these islands were joined with India to form the Indigascar landmass, which itself then split into its three component parts around the start of the Tertiary. This history is reflected in the biota of the Seychelles, which appears to contain examples of both vicariance- and dispersal-mediated divergence from Malagasy or Indian sister taxa. One lineage for which this has been assumed but never thoroughly tested is the Seychellean tiger chameleon, a species assigned to the otherwise Madagascar-endemic genus Calumma. We present a multi-locus phylogenetic study of chameleons, and find that the Seychellean species is actually the sister taxon of a southern African clade and requires accomodation in its own genus as Archaius tigris. Divergence dating and biogeographic analyses indicate an origin by transoceanic dispersal from Africa to the Seychelles in the Eocene–Oligocene, providing, to our knowledge, the first such well-documented example and supporting novel palaeocurrent reconstructions.


Proceedings of the Royal Society of London. Series B, Biological Sciences | 2010

Genetic and historic evidence for climate-driven population fragmentation in a top cetacean predator: the harbour porpoises in European water

Michael Fontaine; Krystal A. Tolley; Johan Michaux; Alexei Birkun; Marisa Ferreira; Thierry Jauniaux; Ángela Llavona; Bayram Öztürk; Ayaka Amaha Öztürk; Vincent Ridoux; Emer Rogan; Marina Sequeira; Jean-Marie Bouquegneau; Stuart J. E. Baird

Recent climate change has triggered profound reorganization in northeast Atlantic ecosystems, with substantial impact on the distribution of marine assemblages from plankton to fishes. However, assessing the repercussions on apex marine predators remains a challenging issue, especially for pelagic species. In this study, we use Bayesian coalescent modelling of microsatellite variation to track the population demographic history of one of the smallest temperate cetaceans, the harbour porpoise (Phocoena phocoena) in European waters. Combining genetic inferences with palaeo-oceanographic and historical records provides strong evidence that populations of harbour porpoises have responded markedly to the recent climate-driven reorganization in the eastern North Atlantic food web. This response includes the isolation of porpoises in Iberian waters from those further north only approximately 300 years ago with a predominant northward migration, contemporaneous with the warming trend underway since the ‘Little Ice Age’ period and with the ongoing retreat of cold-water fishes from the Bay of Biscay. The extinction or exodus of harbour porpoises from the Mediterranean Sea (leaving an isolated relict population in the Black Sea) has lacked a coherent explanation. The present results suggest that the fragmentation of harbour distribution range in the Mediterranean Sea was triggered during the warm ‘Mid-Holocene Optimum’ period (approx. 5000 years ago), by the end of the post-glacial nutrient-rich ‘Sapropel’ conditions that prevailed before that time.


Zoology | 2009

Morphology, ornaments and performance in two chameleon ecomorphs: is the casque bigger than the bite?

G. John Measey; Kevin P. Hopkins; Krystal A. Tolley

The evolution of ecomorphs within a species may represent either unique evolutionary events or multiple convergent events in similar environments. Functional studies of differing morphological traits of ecomorphs have been important to elucidate their role in adaptive radiations. The Cape dwarf chameleon, Bradypodion pumilum, has two ecomorphs: a large, brightly colored, ornate form found in closed habitats, and a small, dull form with reduced ornamentation found in open vegetation. The typical form is known to use casque size to communicate fighting ability, but it is unknown whether this is an honest signal and whether casque size is related to bite force. We show through a population genetic analysis that these ecomorphs are not separate genetic lineages but the result of multiple transitions between closed and open habitats. From measurements of ornamental and non-ornamental morphological characters and bite force in 105 chameleons, we find that bite force is significantly related to head size and is best predicted by head width. Bite force was reasonably predicted by casque height in ecomorphs from closed habitats, but not in those from open habitats. For size-adjusted data, open habitat males had wider heads, biting harder than closed habitat males. Our data suggest honesty in signaling for closed habitat ecomorphs, but for open habitat ecomorphs communication is different, a finding commensurate with the common framework for species radiations.


Molecular Ecology | 2013

Phylogeography of the widespread African puff adder (Bitis arietans) reveals multiple Pleistocene refugia in southern Africa.

Axel Barlow; Karis Baker; Catriona R. Hendry; Lindsay Peppin; Tony Phelps; Krystal A. Tolley; Catharine E. Wüster; Wolfgang Wüster

Evidence from numerous Pan‐African savannah mammals indicates that open‐habitat refugia existed in Africa during the Pleistocene, isolated by expanding tropical forests during warm and humid interglacial periods. However, comparative data from other taxonomic groups are currently lacking. We present a phylogeographic investigation of the African puff adder (Bitis arietans), a snake that occurs in open‐habitat formations throughout sub‐Saharan Africa. Multiple parapatric mitochondrial clades occur across the current distribution of B. arietans, including a widespread southern African clade that is subdivided into four separate clades. We investigated the historical processes responsible for generating these phylogeographic patterns in southern Africa using species distribution modelling and genetic approaches. Our results show that interior regions of South Africa became largely inhospitable for B. arietans during glacial maxima, whereas coastal and more northerly areas remained habitable. This corresponds well with the locations of refugia inferred from mitochondrial data using a continuous phylogeographic diffusion model. Analysis of data from five anonymous nuclear loci revealed broadly similar patterns to mtDNA. Secondary admixture was detected between previously isolated refugial populations. In some cases, this is limited to individuals occurring near mitochondrial clade contact zones, but in other cases, more extensive admixture is evident. Overall, our study reveals a complex history of refugial isolation and secondary expansion for puff adders and a mosaic of isolated refugia in southern Africa. We also identify key differences between the processes that drove isolation in B. arietans and those hypothesized for sympatric savannah mammals.


Molecular Phylogenetics and Evolution | 2009

The potential for predicted climate shifts to impact genetic landscapes of lizards in the South African Cape Floristic Region

Krystal A. Tolley; Jane Sakwa Makokha; Darren T. Houniet; Belinda L. Swart; Conrad A. Matthee

The Cape Floristic Region (CFR) is well-known for its floral diversity, yet also contains a rich herpetofauna with >180 species, 28% of which are endemic. Recent studies conducted on CFR lizards indicated that phylogeographic patterns show some congruency, and that the western CFR shows higher overall diversity in the form of population and/or clade turnover. Here, we combine mitochondrial sequence data from two published (Bradypodion spp. and Agama atra) and one new dataset (Pedioplanis burchelli) to investigate whether geographic patterns of genetic diversity could be influenced by predicted climatic changes. We utilised Bayesian methodology and spatial genetic landscapes to establish broad-scale patterns and show that the western CFR is a contact zone for several clades in all three taxa, supporting the hypothesis of phylogeographic congruence. Current levels of gene flow are virtually zero between the western and eastern CFR. In the east, gene flow between populations is negligible at present but was probably stronger in the past given the present lack of strong genetic structure. Bioclimatic modelling predicted that climatically suitable areas within the CFR will decline for Bradypodion spp. and P. burchelli, with areas high in clade turnover loosing more climatically suitable areas than areas with low clade turnover. The models also predict that loss of climatic suitability may result in highly fragmented and patchy distributions, resulting in a greater loss of connectivity. In contrast, A. atra does not show significant climatic suitability losses overall, although it may experience localised losses (and gains). This species is not predicted to loose suitability in areas of high clade turnover. Thus, the incorporation of genetic data into climatic models has extended our knowledge on the vulnerability of these species given the predicted threat of landscape change.


Conservation Genetics | 2001

Mitochondrial DNA sequence variation and phylogeographic patterns in harbour porpoises (Phocoena phocoena) from the North Atlantic

Krystal A. Tolley; Gísli A. Víkingsson; Patricia E. Rosel

The harbour porpoise (Phocoena phocoena)experiences high rates of incidental mortalityin commercial fisheries, and in some areasthese rates are sufficiently high to justifyconcern over population sustainability. Giventhe high incidental mortality, the resolutionof population structure will be important toconservation and management, but in the NorthAtlantic the relationships among many of theputative populations remain unclear. Aprevious genetic study demonstrated substantialgenetic differences between eastern and westernNorth Atlantic populations, however thelocation of this break remained unresolved. Inthe present study, we addressed this issue byincluding new samples from Iceland. Toinvestigate population structure, variation inthe mitochondrial DNA of 370 porpoises wascompared among six locations corresponding toseveral of the putative populations (Gulf ofMaine, Gulf of St. Lawrence, Newfoundland, WestGreenland, Iceland, Norway). The first 342base pairs of the control region were sequencedand genetic variation investigated by analysisof molecular variance (FST andΦST) and χ2 withpermutation. Although some fine scalepopulation structure was detected, porpoisesfrom Iceland were found to be more similar tothe western populations (W. Greenland, Gulf ofSt. Lawrence, Newfoundland, Gulf of Maine) thanto Norway. Furthermore, porpoises from Norwaywere different from all other regions. Thesepatterns suggest the existence of adiscontinuity between Iceland and Norway,possibly the result of isolating events causedby repeated range contractions and expansionsthroughout Quaternary glaciation events withinthe North Atlantic. These results suggest thatharbour porpoise populations within the NorthAtlantic are distinguishable, but patterns mustbe interpreted in light of their historicalbiogeography.


Proceedings of the Royal Society of London B: Biological Sciences | 2012

Floral volatiles, pollinator sharing and diversification in the fig–wasp mutualism: insights from Ficus natalensis, and its two wasp pollinators (South Africa)

A. Cornille; J.G. Underhill; Astrid Cruaud; Martine Hossaert-McKey; Steven D. Johnson; Krystal A. Tolley; Finn Kjellberg; S. van Noort; Magali Proffit

Combining biogeographic, ecological, morphological, molecular and chemical data, we document departure from strict specialization in the fig-pollinating wasp mutualism. We show that the pollinating wasps Elisabethiella stuckenbergi and Elisabethiella socotrensis form a species complex of five lineages in East and Southern Africa. Up to two morphologically distinct lineages were found to co-occur locally in the southern African region. Wasps belonging to a single lineage were frequently the main regional pollinators of several Ficus species. In South Africa, two sister lineages, E. stuckenbergi and E. socotrensis, pollinate Ficus natalensis but only E. stuckenbergi also regularly pollinates Ficus burkei. The two wasp species co-occur in individual trees of F. natalensis throughout KwaZulu-Natal. Floral volatile blends emitted by F. natalensis in KwaZulu-Natal were similar to those emitted by F. burkei and different from those produced by other African Ficus species. The fig odour similarity suggests evolutionary convergence to attract particular wasp species. The observed pattern may result from selection for pollinator sharing among Ficus species. Such a process, with one wasp species regionally pollinating several hosts, but several wasp species pollinating a given Ficus species across its geographical range could play an important role in the evolutionary dynamics of the Ficus-pollinating wasp association.

Collaboration


Dive into the Krystal A. Tolley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony Herrel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

William R. Branch

Nelson Mandela Metropolitan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Werner Conradie

South African Institute for Aquatic Biodiversity

View shared research outputs
Researchain Logo
Decentralizing Knowledge