Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Krystof S. Bankiewicz is active.

Publication


Featured researches published by Krystof S. Bankiewicz.


Neurology | 2008

Results from a phase I safety trial of hAADC gene therapy for Parkinson disease

Jamie L. Eberling; W. J. Jagust; Chadwick W. Christine; Phillip A. Starr; Paul S. Larson; Krystof S. Bankiewicz; Michael J. Aminoff

Background: In a primate model of Parkinson disease (PD), intrastriatal infusion of an adeno-associated viral (AAV) vector containing the human aromatic l-amino acid decarboxylase (hAADC) gene results in robust gene expression. After gene transfer, low doses of systemically administered l-dopa are converted to dopamine in the transduced striatal neurons, resulting in behavioral improvement without the side effects typically associated with higher doses of l-dopa. These studies led to the initiation of a phase I safety trial. Here we report the findings for the first cohort of five patients. Methods: Patients with moderate to advanced PD received bilateral infusion of a low dose of the AAV-hAADC vector into the putamen. PET scans using the AADC tracer, 6-[18F]fluoro-l-m-tyrosine (FMT), were performed at baseline and at 1 and 6 months after infusion as an in vivo measure of gene expression. Results: PET results showed an average 30% increase in FMT uptake (Kic) in the putamen after gene transfer. Preliminary analysis of clinical data indicates a modest improvement, but absence of a control and the nonblinded analyses make interpretation difficult. Conclusions: Thus far, this gene therapy approach has been well tolerated and shows PET evidence of sustained gene expression. These initial findings demonstrate the safety of the therapy; higher doses of adeno-associated viral vector containing the human aromatic l-amino acid decarboxylase gene in the next cohort of patients may further increase dopamine production in the putamen and provide more profound clinical benefit. GLOSSARY: AADC = aromatic l-amino acid decarboxylase; AAV = adeno-associated viral; DA = dopamine; FMT =6-[18F]fluoro-l-m-tyrosine; hAADC = human aromatic l-amino acid decarboxylase; l-dopa = levodopa; PD = Parkinson disease; ROI = region of interest; UPDRS = Unified Parkinson’s Disease Rating Scale.


Neurology | 2009

Safety and tolerability of putaminal AADC gene therapy for Parkinson disease

Chadwick W. Christine; Phillip A. Starr; Paul S. Larson; Jamie L. Eberling; W. J. Jagust; R. A. Hawkins; H. F. VanBrocklin; J. F. Wright; Krystof S. Bankiewicz; Michael J. Aminoff

Background: In Parkinson disease (PD), the benefit of levodopa therapy becomes less marked over time, perhaps because degeneration of nigrostrial neurons causes progressive loss of aromatic l-amino acid decarboxylase (AADC), the enzyme that converts levodopa into dopamine. In a primate model of PD, intrastriatal infusion of an adeno-associated viral type 2 vector containing the human AADC gene (AAV-hAADC) results in robust response to low-dose levodopa without the side effects associated with higher doses. These data prompted a clinical trial. Methods: Patients with moderately advanced PD received bilateral intraputaminal infusion of AAV-hAADC vector. Low-dose and high-dose cohorts (5 patients in each) were studied using standardized clinical rating scales at baseline and 6 months. PET scans using the AADC tracer [18F]fluoro-l-m-tyrosine (FMT) were performed as a measure of gene expression. Results: The gene therapy was well tolerated, but 1 symptomatic and 2 asymptomatic intracranial hemorrhages followed the operative procedure. Total and motor rating scales improved in both cohorts. Motor diaries also showed increased on-time and reduced off-time without increased “on” time dyskinesia. At 6 months, FMT PET showed a 30% increase of putaminal uptake in the low-dose cohort and a 75% increase in the high-dose cohort. Conclusion: This study provides class IV evidence that bilateral intrastriatal infusion of adeno-associated viral type 2 vector containing the human AADC gene improves mean scores on the Unified Parkinson’s Disease Rating Scale by approximately 30% in the on and off states, but the surgical procedure may be associated with an increased risk of intracranial hemorrhage and self-limited headache.


Experimental Neurology | 2005

Gadolinium-loaded liposomes allow for real-time magnetic resonance imaging of convection-enhanced delivery in the primate brain

Ryuta Saito; Michal T. Krauze; John Bringas; Charles O. Noble; Tracy R. McKnight; Pamela Jackson; Michael F. Wendland; Christoph Mamot; Daryl C. Drummond; Dimitri B. Kirpotin; Keelung Hong; Mitchel S. Berger; John W. Park; Krystof S. Bankiewicz

Drug delivery to brain tumors has long posed a major challenge. Convection-enhanced delivery (CED) has been developed as a drug delivery strategy to overcome this difficulty. Ideally, direct visualization of the tissue distribution of drugs infused by CED would assure successful delivery of therapeutic agents to the brain tumor while minimizing exposure of the normal brain. We previously developed a magnetic resonance imaging (MRI)-based method to visualize the distribution of liposomal agents after CED in rodent brains. In the present study, CED of liposomes was further examined in the non-human primate brain (n = 6). Liposomes containing Gadoteridol, DiI-DS, and rhodamine were infused in corona radiata, putamen nucleus, and brain stem. Volume of distribution was analyzed for all delivery locations by histology and MR imaging. Real-time MRI monitoring of liposomes containing gadolinium allowed direct visualization of a robust distribution. MRI of liposomal gadolinium was highly accurate at determining tissue distribution, as confirmed by comparison with histological results from concomitant administration of fluorescent liposomes. Linear correlation for liposomal infusions between infusion volume and distribution volume was established in all targeted locations. We conclude that an integrated strategy combining liposome/nanoparticle technology, CED, and MRI may provide new opportunities for the treatment of brain tumors. Our ability to directly monitor and to control local delivery of liposomal drugs will most likely result in greater clinical efficacy when using CED in management of patients.


Cancer Research | 2006

Novel Nanoliposomal CPT-11 Infused by Convection-Enhanced Delivery in Intracranial Tumors: Pharmacology and Efficacy

Charles O. Noble; Michal T. Krauze; Daryl C. Drummond; Yoji Yamashita; Ryuta Saito; Mitchel S. Berger; Dmitri B. Kirpotin; Krystof S. Bankiewicz; John W. Park

We hypothesized that combining convection-enhanced delivery (CED) with a novel, highly stable nanoparticle/liposome containing CPT-11 (nanoliposomal CPT-11) would provide a dual drug delivery strategy for brain tumor treatment. Following CED in rat brains, tissue retention of nanoliposomal CPT-11 was greatly prolonged, with >20% injected dose remaining at 12 days for all doses. Tissue residence was dose dependent, with doses of 60 microg (3 mg/mL), 0.8 mg (40 mg/mL), and 1.6 mg (80 mg/mL) resulting in tissue half-life (t(1/2)) of 6.7, 10.7, and 19.7 days, respectively. In contrast, CED of free CPT-11 resulted in rapid drug clearance (tissue t(1/2) = 0.3 day). At equivalent CED doses, nanoliposomal CPT-11 increased area under the time-concentration curve by 25-fold and tissue t(1/2) by 22-fold over free CPT-11; CED in intracranial U87 glioma xenografts showed even longer tumor retention (tissue t(1/2) = 43 days). Plasma levels were undetectable following CED of nanoliposomal CPT-11. Importantly, prolonged exposure to nanoliposomal CPT-11 resulted in no measurable central nervous system (CNS) toxicity at any dose tested (0.06-1.6 mg/rat), whereas CED of free CPT-11 induced severe CNS toxicity at 0.4 mg/rat. In the intracranial U87 glioma xenograft model, a single CED infusion of nanoliposomal CPT-11 at 1.6 mg resulted in significantly improved median survival (>100 days) compared with CED of control liposomes (19.5 days; P = 4.9 x 10(-5)) or free drug (28.5 days; P = 0.011). We conclude that CED of nanoliposomal CPT-11 greatly prolonged tissue residence while also substantially reducing toxicity, resulting in a highly effective treatment strategy in preclinical brain tumor models.


Human Gene Therapy | 2012

Adeno-Associated Virus Serotype 9 Transduction in the Central Nervous System of Nonhuman Primates

Lluis Samaranch; Ernesto A. Salegio; Waldy San Sebastian; Adrian P. Kells; Kevin D. Foust; John Bringas; Clementine Lamarre; John Forsayeth; Brian K. Kaspar; Krystof S. Bankiewicz

Widespread distribution of gene products at clinically relevant levels throughout the CNS has been challenging. Adeno-associated virus type 9 (AAV9) vector has been reported as a good candidate for intravascular gene delivery, but low levels of preexisting antibody titers against AAV in the blood abrogate cellular transduction within the CNS. In the present study we compared the effectiveness of vascular delivery and cerebrospinal fluid (CSF) delivery of AAV9 in transducing CNS tissue in nonhuman primates. Both delivery routes generated similar distribution patterns, although we observed a more robust level of transduction after CSF delivery. Consistent with previous reports administering AAV9, we found greater astrocytic than neuronal tropism via both routes, although we did find a greater magnitude of CNS transduction after CSF delivery compared with intravascular delivery. Last, we have demonstrated that delivery of AAV9 into the CSF does not shield against AAV antibodies. This has obvious implications when developing and/or implementing any clinical trial studies.


Human Gene Therapy | 2012

Long-Term Evaluation of a Phase 1 Study of AADC Gene Therapy for Parkinson's Disease

Gabriele Mittermeyer; Chadwick W. Christine; Kathryn H. Rosenbluth; Suzanne L. Baker; Philip A. Starr; Paul S. Larson; Paul L. Kaplan; John Forsayeth; Michael J. Aminoff; Krystof S. Bankiewicz

We report the results of a long-term follow-up of subjects in a phase 1 study of AAV2-hAADC (adeno-associated virus type 2-human aromatic L-amino acid decarboxylase) gene therapy for the treatment of Parkinsons disease (PD). Ten patients with moderately advanced PD received bilateral putaminal infusions of either a low or a high dose of AAV2-hAADC vector. An annual positron emission tomography (PET) imaging with [(18)F]fluoro-L-m-tyrosine tracer was used for evaluation of AADC expression, and a standard clinical rating scale [Unified Parkinsons Disease Rating Scale (UPDRS)] was used to assess effect. Our previous analysis of the 6-month data suggested that this treatment was acutely safe and well tolerated. We found that the elevated PET signal observed in the first 12 months persisted over 4 years in both dose groups. A significantly increased PET value compared with the presurgery baseline was maintained over the 4-year monitoring period. The UPDRS in all patients off medication for 12 hr improved in the first 12 months, but displayed a slow deterioration in subsequent years. This analysis demonstrates that apparent efficacy continues through later years with an acceptable safety profile. These data indicate stable transgene expression over 4 years after vector delivery and continued safety, but emphasize the need for a controlled efficacy trial and the use of a higher vector dose.


Cancer Research | 2004

Convection-Enhanced Delivery of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand with Systemic Administration of Temozolomide Prolongs Survival in an Intracranial Glioblastoma Xenograft Model

Ryuta Saito; John Bringas; Amith Panner; Matyas Tamas; Russell O. Pieper; Mitchel S. Berger; Krystof S. Bankiewicz

Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent activator of cell death, preferentially killing neoplastic cells over normal cells, the efficacy of TRAIL for the treatment of glioma might be limited due to cellular resistance and, importantly, poor distribution after systemic administration. TRAIL and temozolomide (TMZ) were recently shown to have a synergistic antitumor effect against U87MG glioma cells in vitro. Convection-enhanced delivery (CED) can effectively distribute TRAIL protein throughout a brain tumor mass. In this study, we evaluated CED of TRAIL, alone and in conjunction with systemic TMZ administration, for antitumor efficacy. CED of TRAIL demonstrated safe and effective distribution in both normal brain and a U87MG intracranial xenograft model. Individually, both CED of TRAIL and systemic TMZ administration prolonged survival in tumor-bearing rats. However, the combination of these two treatments was significantly more effective than either treatment alone. CED of TRAIL in conjunction with systemic TMZ treatment is a promising strategy for the treatment of malignant gliomas.


Neurotherapeutics | 2008

Image-Guided Convection-Enhanced Delivery Platform in the Treatment of Neurological Diseases

Massimo S. Fiandaca; John Forsayeth; Peter J. Dickinson; Krystof S. Bankiewicz

SummaryConvection-enhanced delivery (CED) of substances within the human brain is becoming a more frequent experimental treatment option in the management of brain tumors, and more recently in phase 1 trials for gene therapy in Parkinson’s disease (PD). Benefits of this intracranial drug-transfer technology include a more efficient delivery of large volumes of therapeutic agent to the target region when compared with more standard delivery approaches (i.e., biopolymers, local infusion). In this article, we describe specific technical modifications we have made to the CED process to make it more effective. For example, we developed a reflux-resistant infusion cannula that allows increased infusion rates to be used. We also describe our efforts to visualize the CED process in vivo, using liposomal nanotechnology and real-time intraoperative MRI. In addition to carrying the MRI contrast agent, nanoliposomes also provide a standardized delivery vehicle for the convection of drugs to a specific brain-tissue volume. This technology provides an added level of assurance via visual confirmation of CED, allowing intraoperative alterations to the infusion if there is reflux or aberrant delivery. We propose that these specific modifications to the CED technology will improve efficacy by documenting and standardizing the treatment-volume delivery. Furthermore, we believe that this image-guided CED platform can be used in other translational neuroscience efforts, with eventual clinical application beyond neuro-oncology and PD.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Efficient gene therapy-based method for the delivery of therapeutics to primate cortex

Adrian P. Kells; Piotr Hadaczek; Dali Yin; John Bringas; Vanja Varenika; John Forsayeth; Krystof S. Bankiewicz

Transduction of the primate cortex with adeno-associated virus (AAV)-based gene therapy vectors has been challenging, because of the large size of the cortex. We report that a single infusion of AAV2 vector into thalamus results in widespread expression of transgene in the cortex through transduction of widely dispersed thalamocortical projections. This finding has important implications for the treatment of certain genetic and neurodegenerative diseases.


Molecular Therapy | 2010

Eight Years of Clinical Improvement in MPTP-Lesioned Primates After Gene Therapy With AAV2-hAADC

Piotr Hadaczek; Jamie L. Eberling; Philip Pivirotto; John Bringas; John Forsayeth; Krystof S. Bankiewicz

This study completes the longest known in vivo monitoring of adeno-associated virus (AAV)-mediated gene expression in nonhuman primate (NHP) brain. Although six of the eight parkinsonian NHP originally on study have undergone postmortem analysis, as described previously, we monitored the remaining two animals for a total of 8 years. In this study, NHP received AAV2-human L-amino acid decarboxylase (hAADC) infusions into the MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-lesioned putamen. Restoration of AADC activity restored normal response to levodopa and gene expression could be quantitated repeatedly over many years by 6-[(18)F]fluoro-meta-tyrosine (FMT)-positron emission tomography (PET) and confirm that AADC transgene expression remained unchanged at the 8-year point. Behavioral assessments confirmed continued, normalized response to levodopa (improvement by 35% over historical controls). Postmortem analysis showed that, although only 5.6 + or - 1% and 6.6 + or - 1% of neurons within the transduced volumes of the striatum were transduced, this still secured robust clinical improvement. Importantly, there were no signs of neuroinflammation or reactive gliosis at the 8-year point, indicative of the safety of this treatment. The present data suggest that the improvement in the L-3,4-dihydroxyphenylalanine (L-Dopa) therapeutic window brought about by AADC gene therapy is pronounced and persistent for many years.

Collaboration


Dive into the Krystof S. Bankiewicz's collaboration.

Top Co-Authors

Avatar

John Forsayeth

University of California

View shared research outputs
Top Co-Authors

Avatar

John Bringas

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John W. Park

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge