Kryštof Verner
Charles University in Prague
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kryštof Verner.
Geological Society, London, Special Publications | 2014
Jiří Žák; Kryštof Verner; Vojtěch Janoušek; František V. Holub; Václav Kachlík; Fritz Finger; Jaroslava Hajná; Filip Tomek; Lukas Vondrovic; Jakub Trubač
Abstract This paper summarizes the current knowledge on the nature, kinematics and timing of movement along major tectonic boundaries in the Bohemian Massif and demonstrates how the Variscan plutonism and deformation evolved in space and time. Four main episodes are recognized: (1) Late Devonian–early Carboniferous subduction and continental underthrusting of the Saxothuringian Unit beneath the Teplá–Barrandian Unit resulted in the orogen-perpendicular shortening and growth of an inboard magmatic arc during c. 354–346 Ma; (2) the subduction-driven shortening was replaced by collapse of the Teplá–Barrandian upper crust, exhumation of the high-grade (Moldanubian) core of the orogen at c. 346–337 Ma and by dextral strike-slip along orogen-perpendicular NW–SE shear zones; (3) following closure of a Rhenohercynian Ocean basin, the Brunia microplate was underthrust beneath the eastern flank of the Saxothuringian/Teplá–Barrandian/Moldanubian ‘assemblage’; this process commenced at c. 346 Ma in the NE and ceased at c. 335 Ma in the SW; and (4) late readjustments within the amalgamated Bohemian Massif included crustal exhumation and mainly S-type granite plutonism along the edge of the Brunia indentor at c. 330–327 Ma, and peripheral tectonothermal activity driven by strike-slip faulting and possibly mantle delamination around the consolidated Bohemian Massifs interior until late Carboniferous–earliest Permian times.
Geological Magazine | 2008
Jiří Žák; Kryštof Verner; Patricie Týcová
This paper elaborates on the concept of multiple magmatic fabrics in plutons. After a general overview of various types of multiple fabrics that may develop in magmatic rocks, two case examples of porphyritic granite and melasyenite plutons in the Bohemian Massif are examined. In the Jizera granite, complex variations in K-feldspar phenocryst shape-fabric revealed by image analysis of a 200 m long section of an underground tunnel are in contrast with homogeneously oriented magnetic (AMS) fabric carried by coaxial contributions of biotite, magnetite and maghemite. In the Knižeci Stolec melasyenite pluton, emplacement-related margin-parallel feldspar foliation was overprinted by flat-lying foliation; the latter is interpreted to record regional tectonic strain. At the two stations examined in detail, the crystallographic-preferred orientation of biotite and amphibole in the inter-phenocryst matrix (measured using electron back-scatter diffraction – EBSD) differed from both feldspar fabric and also from the AMS principal directions. Multiple magmatic fabrics in these two plutons are interpreted in terms of fabric superposition, where late weak strain is superposed onto a high-strength phenocryst framework, but is accommodated preferentially by small mineral grains (biotite, magnetite) in the melt-bearing matrix. This mechanism may explain the discrepancy between mesoscopic feldspar fabric and AMS. We conclude that multiple magmatic fabrics in plutons may thus result from accumulated strain caused by different processes during final crystallization and, as such, may serve as a sensitive indicator of the evolving interactions between magmatic and tectonic processes in the Earth’s crust.
Journal of the Geological Society | 2017
Filip Tomek; Jiří Žák; Kryštof Verner; František V. Holub; Jiří Sláma; Scott R. Paterson; Valbone Memeti
The Minarets caldera is a volcano–plutonic complex in the Sierra Nevada, California, that exemplifies complex interactions between volcanism and tectonic deformation in continental-margin arcs. Caldera evolution commenced with emplacement of pre-collapse rhyolitic ash-flow tuff, followed by collapse and deposition of volcanic breccia and rhyodacitic ash-flow tuff. Subsequently, the volcanic rocks were deformed along the regional Bench Canyon shear zone. The caldera centre was then intruded by the resurgent c. 100 Ma steep-sided Shellenbarger granite pluton, which steepened the shear zone foliation. The pluton was overprinted by syn- to post-magmatic ∼NNE–SSW horizontal shortening; the same shortening was documented in several other Late Cretaceous syntectonic plutons in the Sierra Nevada and interpreted to record dextral transpression during convergence of the Farallon and North American plates. To explain the unusual tectonic fabric in the shallow-level Shellenbarger pluton, we develop a general model for strain partitioning in syntectonic magma bodies emplaced at various crustal levels. We propose that shallow intrusions, isolated within stiff crust, may tend to accommodate minor pure shear strain whereas simple shear dominates along weak faults and shear zones. By contrast, a rheological reversal is crossed deeper in the crust and magma bodies become the weakest, simple shear-dominated parts of the system. Supplementary material: Analytical methods and anisotropy of magnetic susceptibility and U–Th–Pb isotopic data are available at https://doi.org/10.6084/m9.figshare.c.3582749
Tectonics | 2015
Jiří Žák; Kryštof Verner; Filip Tomek; František V. Holub; Kenneth Johnson; Joshua J. Schwartz
The North American Cordillera is a classic example of accretionary orogen, consisting of multiple oceanic terranes attached to the western margin of Laurentia during the Mesozoic times. Although the Cordillera is linear for most parts, terrane boundaries are at a high angle to the overall structural grain in several segments of the orogen, which has been a matter of longstanding controversy as to how and when these orogenic curvatures formed. This paper discusses mechanisms, kinematics, and timing of initiation of one of these major curvatures, the Blue Mountains Province in northeastern Oregon. Here magmatic fabric patterns and anisotropy of magnetic susceptibility in the Wallowa batholith record three phases of progressive deformation of the host Wallowa terrane during Early Cretaceous. First is terrane-oblique ~NE-SW shortening, interpreted as recording attachment of the amalgamated oceanic and fringing terranes to the continental margin during dextral convergence at ~140 Ma. Deformation subsequently switched to pure shear-dominated ~NNE-SSW shortening associated with crustal thickening, caused by continued impingement of the amalgamated Blue Mountains superterrane into a presumed westward concave reentrant in the continental margin at ~135–128 Ma. Upon impingement (at ~126 Ma), the northern portion of the superterrane became “locked,” leading to reorientation of the principal shortening direction to ~NNW-SSE while its still deformable southern portion rotated clockwise about a vertical axis. We thus propose oblique bending as the main mechanism of the orocline formation whereby horizontal compressive forces resulting from plate convergence acted at an angle to the terrane boundaries.
Trabajos de Geologia | 2010
Lukas Vondrovic; Kryštof Verner
Los braquiopodos retzidinos son una fraccion menor de las faunas devonicas de la CordilleraCantabrica (Norte de Espana). Aparte de un par de formas raras, impublicadas, del Praguiense delDominio Palentino y del Emsiense inferior del Astur-Leones, proximas al genero Rhynchospirina, ellinaje alcanzo su maximo de diversidad en la parte superior del Emsiense, con dos especies del generoRetzia, R. adrieni y R. cf. prominula, Cooperispira subferita y, quizas, una forma impublicada dePlectospira. El grupo no es conocido en el resto del Devonico y reaparece en el Pensilvaniense con algunasformas del genero Hustedia. En este trabajo se propone un nuevo taxon de la Familia Retziidae,Argovejia n.gen., de la parte final del Emsiense superior de Asturias y Leon, constituido por su especietipo,A. talenti n.sp. y, quizas, por las formas del Emsiense superior del Macizo Armoricano (Francia)Retzia haidingeri var. armoricana y Retzia haidingeri var. dichotoma.The Ronda Depression is filled by Neogene sediments on the boundary between Subbeticreliefs, with NE-SW structural trends, and the frontal Subbetic Chaotic Complexes. The folding stylein the Subbetic Units of Western Betics is strongly controlled by the rheology of the rocks: thick andmassive beds of Jurassic limestones over Triassic marls and gypsum with plastic behaviour. Main deformationstructures in the sedimentary infill of the Ronda depression are simultaneous box folds withNNE-SSW and WNW-ESE trends that only affect its southwestern part. This distribution of folds isa consequence of the inherited fold trend that affected the basement during Early Burdigalian age.
International Journal of Earth Sciences | 2005
Jiří Žák; František V. Holub; Kryštof Verner
Lithos | 2011
Jiří Žák; Kryštof Verner; Fritz Finger; Shah Wali Faryad; Marta Chlupáčová; František Veselovský
International Journal of Earth Sciences | 2008
Kryštof Verner; Jiří Žák; Radmila Nahodilova; František V. Holub
Journal of Structural Geology | 2006
Kryštof Verner; Jiří Žák; František Hrouda; František V. Holub
Tectonics | 2013
Jiří Žák; Kryštof Verner; Jiří Sláma; Václav Kachlík; Marta Chlupáčová