Krystyna I. Wolska
University of Warsaw
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Krystyna I. Wolska.
Central European Journal of Biology | 2010
Krystyna I. Wolska; Anna M. Grudniak; Beata Fiecek; Anna Kraczkiewicz-Dowjat; Anna Kurek
Bacterial resistance to antibiotics is increasing at an alarming rate and many commonly used antibiotics are no longer effective. Thus, there is considerable interest in investigating novel antibacterial compounds, such as the plant-derived pentacyclic triterpenoids, including oleanolic acid (OA), ursolic acid (UA) and their derivatives. These compounds can be isolated from many medicinal and crop plants and their antibacterial, antiviral, antiulcer and anti-inflammatory effects are well documented. OA and UA are active against many bacterial species, particularly Gram-positive species, including mycobacteria. They inhibit bacterial growth and survival, and the spectrum of minimal inhibitory concentration (MIC) values is very broad. In addition, OA, UA and their derivatives display potent antimutagenic activity. Studies to identify the cellular targets and molecular mechanisms of OA and UA action were initiated a few years ago and it has already been demonstrated that both acids influence bacterial gene expression, the formation and maintenance of biofilms, cell autolysis and peptidoglycan turnover. Before these compounds can be used clinically as antimicrobial agents, further extensive studies are required to determine their cytotoxicity and the optimum mode of their application.
Planta Medica | 2008
Anna Szakiel; Dariusz Ruszkowski; Anna M. Grudniak; Anna Kurek; Krystyna I. Wolska; Maria Doligalska; Wirginia Janiszowska
The antibacterial and antiparasitic activities of free oleanolic acid and its glucosides and glucuronides isolated from marigold (Calendula officinalis) were investigated. The MIC of oleanolic acid and the effect on bacterial growth were estimated by A600 measurements. Oleanolic acids influence on bacterial survival and the ability to induce autolysis were measured by counting the number of cfu. Cell morphology and the presence of endospores were observed under electron and light microscopy, respectively. Oleanolic acid inhibited bacterial growth and survival, influenced cell morphology and enhanced the autolysis of Gram-positive bacteria suggesting that bacterial envelopes are the target of its activity. On the other hand, glycosides of oleanolic acid inhibited the development of L3 Heligmosomoides polygyrus larvae, the infective stage of this intestinal parasitic nematode. In addition, both oleanolic acid and its glycosides reduced the rate of L3 survival during prolonged storage, but only oleanolic acid glucuronides affected nematode infectivity. The presented results suggest that oleanolic acid and its glycosides can be considered as potential therapeutic agents.
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2010
Anna Kurek; Anna M. Grudniak; Magdalena Szwed; Anna Klicka; Lukasz Samluk; Krystyna I. Wolska; Wirginia Janiszowska; Magdalena Popowska
The plant pentacyclic triterpenoids, oleanolic and ursolic acids, inhibit the growth and survival of many bacteria, particularly Gram-positive species, including pathogenic ones. The effect of these compounds on the facultative human pathogen Listeria monocytogenes was examined. Both acids affected cell morphology and enhanced autolysis of the bacterial cells. Autolysis of isolated cell walls was inhibited by oleanolic acid, but the inhibitory activity of ursolic acid was less pronounced. Both compounds inhibited peptidoglycan turnover and quantitatively affected the profile of muropeptides obtained after digestion of peptidoglycan with mutanolysin. These results suggest that peptidoglycan metabolism is a cellular target of oleanolic and ursolic acids.
Phytomedicine | 2012
Anna Kurek; Paulina Nadkowska; Sylwia Pliszka; Krystyna I. Wolska
Antibiotic resistance among bacterial pathogens is a serious problem for human and veterinary medicine, which necessitates the development of novel therapeutics and antimicrobial strategies. Some plant-derived compounds, e.g. pentacyclic triterpenoids such as oleanolic acid (OA) and ursolic acid (UA), have potential as a new class of antibacterial agents as they are active against many bacterial species, both Gram-positive and Gram-negative, and specifically target the cell envelope. The aim of the present study was to investigate the influence of OA and UA on the susceptibility of four bacterial pathogens (Pseudomonas aeruginosa, Listeria monocytogenes, Staphylococcus aureus and Staphylococcus epidermidis) to the β-lactam antibiotics ampicillin (Ap) and oxacillin (Ox). Antimicrobial assays were conducted with bacteria growing in liquid suspension cultures (planktonic cells) or as biofilms. Using FICI value estimation and the time-kill method it was demonstrated that in some combinations, the tested compounds acted in synergy to lower the susceptibility of S. aureus, S. epidermidis and L. monocytogenes to ampicillin and oxacillin, but no synergy was observed for P. aeruginosa. These results indicate that OA and UA may be useful when administered in combination with β-lactam antibiotics to combat bacterial infections caused by some Gram-positive pathogens.
Journal of Medical Microbiology | 2014
Katarzyna Markowska; Anna M. Grudniak; Krzysztof K. Krawczyk; Izabela Wróbel; Krystyna I. Wolska
The objective of this study was to characterize the effects of silver nanoparticles on Pseudomonas aeruginosa. Their interactions with several conventional antibiotics and ability to induce a stress response were examined. Interactions between silver nanoparticles (AgNPs) and antibiotics against free-living cells and biofilm of P. aeruginosa were studied using the chequerboard method and time-kill assays. The ability of AgNPs to induce a stress response was determined by evaluation of cellular levels of the DnaK and HtpG chaperones using SDS-PAGE and Western blot analysis. Synergistic activity against free-living P. aeruginosa between AgNPs and ampicillin, streptomycin, rifampicin and tetracycline, but not oxacillin, ciprofloxacin, meropenem or ceftazidime, was demonstrated by the chequerboard method. No such interactions were observed against P. aeruginosa biofilm. The results of time-kill assays confirmed synergy only for the AgNPs-streptomycin combination. AgNPs induced the expression of chaperone DnaK. No induction of the HtpG chaperone was detected. In conclusion, AgNPs not only display potent bactericidal activity against P. aeruginosa, but also act synergistically with several conventional antibiotics to enhance their effect against free-living bacteria as determined by the chequerboard method. The time-kill assay proved synergy between AgNPs and streptomycin only. The ability of AgNPs to induce the major chaperone protein DnaK may influence bacterial resistance to antimicrobials.
Mutation Research | 2013
Anna M. Grudniak; Katarzyna Pawlak; Katarzyna Bartosik; Krystyna I. Wolska
Mutation of the heat shock gene, htpG, causes severe defects of several cellular functions in Escherichia coli. A null htpG mutant constructed by gene replacement was impaired in the biosynthesis and secretion of several enzymes, and in biofilm formation and proteolysis. A significant decrease in the activity of β-lactamase in the ΔhtpG mutant was observed at 42°C. The alkaline phosphatase activity in sonicates of cells propagated at this raised temperature was lower in the ΔhtpG mutant than in the wild-type strain. The ability of the ΔhtpG mutant to degrade abnormal proteins was also impaired compared with the wild-type, but was increased at 42°C. Assays based on bioluminescence and crystal violet staining demonstrated that biofilm formation was diminished in the ΔhtpG mutant at the elevated temperature. All these defects can be complemented upon introducing htpG wild allele.
Microbial Drug Resistance | 2000
Krystyna I. Wolska; Edyta Bugajska; Dorota Jurkiewicz; Mariusz Kuć; Anna Jóźwik
The role of two chaperone proteins, DnaK and the cooperating factor DnaJ, in Escherichia coli antibiotic susceptibility to three antibiotics (a beta-lactam, chloramphenicol, tetracycline) has been studied. It was found that null dnaJ and dnaKdnaJ mutants are impaired in the functions leading to antibiotic susceptibility. The secretion of beta-lactamase to the periplasmic space is diminished in both mutants, and the additive effect of the two mutations was observed. The activity of chloramphenicol acetyltransferase is also impaired in an additive manner in both mutant strains. Tetracycline uptake is changed only in the double deletion mutant. These defects were observed only during incubation at high temperature (42 degrees C). Efficient complementation of some of these defects by the wild-type alleles introduced on low-copy number plasmid was achieved. Minimal inhibitory concentrations and the titer of the wild-type strains, delta dnaJ and delta dnaKdnaJ mutants treated with ampicillin, chloramphenicol, and tetracycline were also determined. Higher susceptibility of both mutants to chloramphenicol and tetracycline, as compared to their wild-type parent, was observed only after 1 h preincubation of cultures at 42 degrees C. On the contrary, both mutants were less susceptible to ampicillin than their parent strain.
Current Microbiology | 2011
Anna M. Grudniak; Anna Kurek; Jolanta Szarlak; Krystyna I. Wolska
The pentacyclic triterpenoids, oleanolic, and ursolic acids, affect peptidoglycan metabolism, altering bacterial morphology, and inhibit the growth and survival of several bacterial species, including pathogenic ones. We investigated the effect of subinhibitory concentrations of these compounds on the expression of three operons from the E. coli cysteine regulon, cysPTWA, cysJIH, and cysB, by using transcriptional fusions with the lacZ reporter gene. An inhibitory effect on β-galactosidase expression directed by all three chromosomal fusions was observed with both compounds. In addition, oleanolic acid, but not ursolic acid, caused a weak increase in DnaK synthesis, suggesting moderate ability of inducing heat-shock response.
Acta of Bioengineering and Biomechanics | 2016
Mariusz Cierech; Jacek Wojnarowicz; Dariusz Szmigiel; Bohdan Bączkowski; Anna M. Grudniak; Krystyna I. Wolska; Witold Łojkowski; Elżbieta Mierzwińska-Nastalska
PURPOSE The aim of the paper was to investigate the antifungal activity of zinc oxide nanoparticles (ZnONPs) against Candida albicans. Some attempts have been made to find out the best way to introduce ZnONPs into polymethyl methacrylate (PMMA) resin material and to determine some parameters of a newly formed composite. MATERIAL AND METHODS Zinc oxide nanoparticles were manufactured and their basic physical parameters were determined (average particle size, density, specific surface area). Minimal inhibitory concentration (MIC) of ZnONPs was determined for the Candida albicans standard strain. The average size of ZnO conglomerates in the monomer solution of PMMA resin was measured using a dynamic light scattering instrument. PMMA resin samples with incorporated ZnONPs were produced. The morphology of nanopowder and the newly formed composite was examined under a scanning electron microscope (SEM). In addition, the roughness parameter of PMMA resin material was investigated before and after ZnONPs modification. RESULTS Nanopowder with the average particle size of 30 nm, density of 5.24 g/cm3 and surface area of 39 m2/g was obtained. MIC was determined at the level of 0.75 mg/mL. The average size of ZnO conglomerates in the monomer solution of acrylic resin dropped by 11 times after ultrasound activation. SEM examination of a newly formed composite showed a successful introduction of ZnONPs confirmed by the energy dispersive X-ray spectroscopy (EDS) analysis. There were no statistically significant differences in the biomaterial roughness before and after the modification of ZnONPs. CONCLUSION Zinc oxide nanoparticles were successfully incorporated into acrylic resin used for the production of denture bases. The presence of nanoparticles with sizes below 100 nm was confirmed. Nevertheless a newly created composite needs to be further investigated to improve its homogeneity, and to check its microbiological properties, strength and biocompatibility prior to its possible clinical use.
Current Microbiology | 2007
Anna M. Grudniak; Anna Kraczkiewicz-Dowjat; Krystyna I. Wolska; Jadwiga Wild
Three R6K-derived γ ori minireplicons were successfully transferred by conjugation from Escherichia coli to several species of pathogenic bacteria. The pFL129 replicon encodes the wild-type initiation replication protein π, while plasmids pFL130 and pAG101 encode mutant forms of the π protein conferring the plasmid copy-up phenotype. Plasmids could be transferred to all recipient species tested, although high efficiency conjugal transfer was only obtained with genera of the Enterobacteriaceae. The efficiency of plasmid transfer to all recipients was lower for the copy-up derivatives, pFL130 and pAG101, than for pFL129. The three γ ori replicons were stably maintained in all transconjugants except pFL129 in Listeria monocytogenes. The two mutant plasmids retained their copy-up phenotype in the new bacterial hosts.