Krzysztof Belczynski
University of Warsaw
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Krzysztof Belczynski.
The Astrophysical Journal | 2002
Krzysztof Belczynski; Vassiliki Kalogera; Tomasz Bulik
A new generation of ground-based interferometric detectors for gravitational waves is currently under construction or has entered the commissioning phase (Laser Interferometer Gravitational-wave Observatory [LIGO], VIRGO, GEO600, TAMA300). The purpose of these detectors is to observe gravitational waves from astrophysical sources and help improve our understanding of the source origin and physical properties. In this paper we study the most promising candidate sources for these detectors: inspiraling double compact objects. We use population synthesis methods to calculate the properties and coalescence rates of compact object binaries: double neutron stars, black hole-neutron star systems, and double black holes. We also examine the formation channels available to double compact object binaries. We explicitly account for the evolution of low-mass helium stars and investigate the possibility of common-envelope evolution involving helium stars as well as two evolved stars. As a result we identify a significant number of new formation channels for double neutron stars, in particular, leading to populations with very distinct properties. We discuss the theoretical and observational implications of such populations, but we also note the need for hydrodynamical calculations to settle the question of whether such common-envelope evolution is possible. We also present and discuss the physical properties of compact object binaries and identify a number of robust, qualitative features as well as their origin. Using the calculated coalescence rates we compare our results to earlier studies and derive expected detection rates for LIGO. We find that our most optimistic estimate for the first LIGO detectors reach a couple of events per year and our most pessimistic estimate for advanced LIGO detectors exceed 10 events per year.
The Astrophysical Journal | 2010
Krzysztof Belczynski; Tomasz Bulik; Chris L. Fryer; Ashley J. Ruiter; Francesca Valsecchi; Jorick S. Vink; Jarrod R. Hurley
We present the spectrum of compact object masses: neutron stars and black holes (BHs) that originate from single stars in different environments. In particular, we calculate the dependence of maximum BH mass on metallicity and on some specific wind mass loss rates (e.g., Hurley et al. and Vink et al.). Our calculations show that the highest mass BHs observed in the Galaxy M bh ~ 15 M ☉ in the high metallicity environment (Z = Z ☉ = 0.02) can be explained with stellar models and the wind mass loss rates adopted here. To reach this result we had to set luminous blue variable mass loss rates at the level of ~10–4 M ☉ yr–1 and to employ metallicity-dependent Wolf-Rayet winds. With such winds, calibrated on Galactic BH mass measurements, the maximum BH mass obtained for moderate metallicity (Z = 0.3 Z ☉ = 0.006) is M bh,max = 30 M ☉. This is a rather striking finding as the mass of the most massive known stellar BH is M bh = 23-34 M ☉ and, in fact, it is located in a small star-forming galaxy with moderate metallicity. We find that in the very low (globular cluster-like) metallicity environment the maximum BH mass can be as high as M bh,max = 80 M ☉ (Z = 0.01 Z ☉ = 0.0002). It is interesting to note that X-ray luminosity from Eddington-limited accretion onto an 80 M ☉ BH is of the order of ~1040 erg s–1 and is comparable to luminosities of some known ultra-luminous X-ray sources. We emphasize that our results were obtained for single stars only and that binary interactions may alter these maximum BH masses (e.g., accretion from a close companion). This is strictly a proof-of-principle study which demonstrates that stellar models can naturally explain even the most massive known stellar BHs.
Astrophysical Journal Supplement Series | 2008
Krzysztof Belczynski; V. Kalogera; Frederic A. Rasio; Ronald E. Taam; A. Zezas; Tomasz Bulik; Thomas J. Maccarone; Natalia Ivanova
We present a comprehensive description of the population synthesis code StarTrack. The original code has been significantly modified and updated. Special emphasis is placed here on processes leading to the formation and further evolution of compact objects (white dwarfs, neutron stars, and black holes). Both single and binary star populations are considered. The code now incorporates detailed calculations of all mass transfer phases, a full implementation of orbital evolution due to tides, as well as the most recent estimates of magnetic braking. This updated version of StarTrack can be used for a wide variety of problems, with relevance to observations with many current and planned observatories, e.g., studies of X-ray binaries (Chandra, XMM-Newton), gravitational radiation sources (LIGO, LISA), and gamma-ray burst progenitors (HETE-II, Swift). The code has already been used in studies of Galactic and extragalactic X-ray binary populations, black holes in young star clusters, Type Ia supernova progenitors, and double compact object populations. Here we describe in detail the input physics, we present the code calibration and tests, and we outline our current studies in the context of X-ray binary populations.
The Astrophysical Journal | 2012
Chris L. Fryer; Krzysztof Belczynski; Grzegorz Wiktorowicz; Michal Dominik; Vicky Kalogera; Daniel E. Holz
The mass distribution of neutron stars and stellar-mass black holes provides vital clues into the nature of stellar core collapse and the physical engine responsible for supernova explosions. A number of supernova engines have been proposed: neutrino- or oscillation-driven explosions enhanced by early (developing in 10-50 ms) and late-time (developing in 200 ms) convection as well as magnetic field engines (in black hole accretion disks or neutron stars). Using our current understanding of supernova engines, we derive mass distributions of stellar compact remnants. We provide analytic prescriptions for both single-star models (as a function of initial star mass) and for binary-star models-prescriptions for compact object masses for major population synthesis codes. These prescriptions have implications for a range of observations: X-ray binary populations, supernova explosion energies, and gravitational wave sources. We show that advanced gravitational radiation detectors (like LIGO/VIRGO or the Einstein Telescope) will be able to further test the supernova explosion engine models once double black hole inspirals are detected.
Astronomy & Astrophysics Supplement Series | 2000
Krzysztof Belczynski; J. Mikolajewska; U. Munari; R. J. Ivison; M. Friedjung
We present a new catalogue of symbiotic stars. In our list we include 188 symbiotic stars as well as 28 objects suspected of being symbiotic. For each star, we present basic observational material: coordinates, V and K magnitudes, ultraviolet (UV), infrared (IR), X-ray and radio observations. We also list the spectral type of the cool component, the maximum ionization potential observed, references to finding charts, spectra, classifications and recent papers discussing the physical parameters and nature of each object. Moreover, we present the orbital photometric ephemerides and orbital elements of known symbiotic binaries, pulsational periods for symbiotic Miras, Hipparcos parallaxes and information about outbursts and flickering.
The Astrophysical Journal | 2006
Krzysztof Belczynski; Rosalba Perna; Tomasz Bulik; V. Kalogera; Natalia Ivanova; Donald Q. Lamb
We present a theoretical study of double compact objects as potential short/hard gamma-ray burst (GRB) progenitors. An updated population synthesis code, StarTrack, is used to calculate properties of double neutron stars and black hole-neutron star binaries. We obtain their formation rates, estimate merger times, and finally predict their most likely merger locations and afterglow properties for different types of host galaxies. Our results serve for a direct comparison with the recent HETE-2 and Swift observations of several short bursts, for which afterglows and host galaxies were detected. We also discuss the possible constraints these observations put on the evolutionary models of double compact object formation. We emphasize that our double compact object models can successfully reproduce at the same time short GRBs within both young, star-forming galaxies (e.g., GRB 050709 and GRB 051221A), as well as within old, elliptical hosts (e.g., GRB 050724 and probably GRB 050509B).
Nature | 2016
Krzysztof Belczynski; Daniel E. Holz; Tomasz Bulik; R. O’Shaughnessy
The merger of two massive (about 30 solar masses) black holes has been detected in gravitational waves. This discovery validates recent predictions that massive binary black holes would constitute the first detection. Previous calculations, however, have not sampled the relevant binary-black-hole progenitors—massive, low-metallicity binary stars—with sufficient accuracy nor included sufficiently realistic physics to enable robust predictions to better than several orders of magnitude. Here we report high-precision numerical simulations of the formation of binary black holes via the evolution of isolated binary stars, providing a framework within which to interpret the first gravitational-wave source, GW150914, and to predict the properties of subsequent binary-black-hole gravitational-wave events. Our models imply that these events form in an environment in which the metallicity is less than ten per cent of solar metallicity, and involve stars with initial masses of 40–100 solar masses that interact through mass transfer and a common-envelope phase. These progenitor stars probably formed either about 2 billion years or, with a smaller probability, 11 billion years after the Big Bang. Most binary black holes form without supernova explosions, and their spins are nearly unchanged since birth, but do not have to be parallel. The classical field formation of binary black holes we propose, with low natal kicks (the velocity of the black hole at birth) and restricted common-envelope evolution, produces approximately 40 times more binary-black-holes mergers than do dynamical formation channels involving globular clusters; our predicted detection rate of these mergers is comparable to that from homogeneous evolution channels. Our calculations predict detections of about 1,000 black-hole mergers per year with total masses of 20–80 solar masses once second-generation ground-based gravitational-wave observatories reach full sensitivity.
Monthly Notices of the Royal Astronomical Society | 2008
Natalia Ivanova; C.O. Heinke; Fred Rasio; Krzysztof Belczynski; John M. Fregeau
In this paper, the second of a series, we study the stellar dynamical and evolutionary processes leading to the formation of compact binaries containing neutron stars (NSs) in dense globular clusters. For this study, 70 dense clusters were simulated independently, with a total stellar mass ∼2 × 10 7 M� , exceeding the total mass of all dense globular clusters in our Galaxy. We find that, in order to reproduce the empirically derived formation rate of low-mass X-ray binaries (LMXBs), we must assume that NSs can be formed via electron-capture supernovae with typical natal kicks smaller than in core-collapse supernovae. Our results explain the observed dependence of the number of LMXBs on ‘collision number’ as well as the large scatter observed between different globular clusters. We predict that the number of quiescent LMXBs in different clusters should not have a strong metallicity dependence. We compare the results obtained from our simulations with the observed population of millisecond pulsars (MSPs). We find that in our cluster model the following mass-gaining events create populations of MSPs that do not match the observations (either they are inconsistent with the observed LMXB production rates, or the inferred binary periods or companion masses are not observed among radio bMSPs): (i) accretion during a common-envelope event with a NS formed through electron-capture supernovae (ECSNe), and (ii) mass transfer (MT) from a white dwarf donor. Some processes lead only to a mild recycling ‐ physical collisions or MT in a post-accretion-induced collapse system. In addition, for MSPs, we distinguish low magnetic field (long-lived) and high magnetic field (short-lived) populations, where in the latter NSs are formed as a result of accretion-induced collapse or merger-induced collapse. With this distinction and by considering only those mass-gaining events that appear to lead to NS recycling, we obtain good agreement of our models with the numbers and characteristics of observed MSPs in 47 Tuc and Terzan 5, as well as with the cumulative statistics for MSPs detected in globular clusters of different dynamical properties. We find that significant production of merging double NSs potentially detectable as short γ -ray bursts occurs only in very dense, most likely core-collapsed clusters.
The Astrophysical Journal | 2007
Krzysztof Belczynski; Ronald E. Taam; V. Kalogera; Frederic A. Rasio; Tomasz Bulik
Double black hole binaries are among the most important sources of gravitational radiation for ground-based detectors such as LIGO or VIRGO. Even if formed with lower efficiency than double neutron star binaries, they could dominate the predicted detection rates, since black holes are more massive than neutron stars and therefore could be detected at greater distances. Here we discuss an evolutionary process that could very significantly limit the formation of close double black hole binaries: the vast majority of their potential progenitors undergo a common-envelope (CE) phase while the donor, one of the massive binary components, is evolving through the Hertzsprung gap. Our latest theoretical understanding of the CE process suggests that this will probably lead to a merger, inhibiting double black hole formation. Barring uncertainties in the physics of CE evolution, we use population synthesis calculations and find that the corresponding reduction in the merger rate of double black holes formed in galactic fields is so great (by ~500) that their contribution to inspiral detection rates for ground-based detectors could become relatively small (~1 in 10) compared to double neutron star binaries. A similar process also reduces the merger rates for double neutron stars, by a factor of ~5, eliminating most of the previously predicted ultracompact NS-NS systems. Our predicted detection rates for Advanced LIGO are now much lower for double black holes (~2 yr-1), but are still quite high for double neutron stars (~20 yr-1). If double black holes were found to be dominant in the detected inspiral signals, this could indicate that they mainly originate from dense star clusters (not included here) or that our theoretical understanding of the CE phase requires significant revision.
The Astrophysical Journal | 2015
Michal Dominik; Emanuele Berti; R. O’Shaughnessy; Ilya Mandel; Krzysztof Belczynski; Christopher L. Fryer; Daniel E. Holz; Tomasz Bulik; F. Pannarale
The unprecedented range of second-generation gravitational-wave (GW) observatories calls for refining the predictions of potential sources and detection rates. The coalescence of double compact objects (DCOs)?i.e., neutron star?neutron star (NS?NS), black hole?neutron star (BH?NS), and black hole?black hole (BH?BH) binary systems?is the most promising source of GWs for these detectors. We compute detection rates of coalescing DCOs in second-generation GW detectors using the latest models for their cosmological evolution, and implementing inspiral-merger-ringdown gravitational waveform models in our signal-to-noise ratio calculations. We find that (1) the inclusion of the merger/ringdown portion of the signal does not significantly affect rates for NS?NS and BH?NS systems, but it boosts rates by a factor of ?1.5 for BH?BH systems; (2) in almost all of our models BH?BH systems yield by far the largest rates, followed by NS?NS and BH?NS systems, respectively; and (3) a majority of the detectable BH?BH systems were formed in the early universe in low-metallicity environments. We make predictions for the distributions of detected binaries and discuss what the first GW detections will teach us about the astrophysics underlying binary formation and evolution.