Krzysztof Gdawiec
University of Silesia in Katowice
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Krzysztof Gdawiec.
Abstract and Applied Analysis | 2015
Krzysztof Gdawiec; Wiesław Kotarski; Agnieszka Lisowska
A survey of some modifications based on the classic Newton’s and the higher order Newton-like root finding methods for complex polynomials is presented. Instead of the standard Picard’s iteration several different iteration processes, described in the literature, which we call nonstandard ones, are used. Kalantari’s visualizations of root finding process are interesting from at least three points of view: scientific, educational, and artistic. By combining different kinds of iterations, different convergence tests, and different colouring we obtain a great variety of polynomiographs. We also check experimentally that using complex parameters instead of real ones in multiparameter iterations do not destabilize the iteration process. Moreover, we obtain nice looking polynomiographs that are interesting from the artistic point of view. Real parts of the parameters alter symmetry, whereas imaginary ones cause asymmetric twisting of polynomiographs.
international symposium on visual computing | 2012
Wiesław Kotarski; Krzysztof Gdawiec; Agnieszka Lisowska
The aim of this paper is to present some modifications of the complex polynomial roots finding visualization process. In this paper Ishikawa and Mann iterations are used instead of the standard Picard iteration. The name polynomiography was introduced by Kalantari for that visualization process and the obtained images are called polynomiographs. Polynomiographs are interesting both from educational and artistic points of view. By the use of different iterations we obtain quite new polynomiographs that look aestheatically pleasing comparing to the ones from standard Picard iteration. As examples we present some polynomiographs for complex polynomial equation z 3 − 1 = 0, permutation and doubly stochastic matrices. We believe that the results of this paper can inspire those who may be interested in created automatically aesthetic patterns. They also can be used to increase functionality of the existing polynomiography software.
International Journal of Applied Mathematics and Computer Science | 2011
Krzysztof Gdawiec; Diana Domańska
Partitioned iterated function systems with division and a fractal dependence graph in recognition of 2D shapes One of the approaches in pattern recognition is the use of fractal geometry. The property of self-similarity of fractals has been used as a feature in several pattern recognition methods. All fractal recognition methods use global analysis of the shape. In this paper we present some drawbacks of these methods and propose fractal local analysis using partitioned iterated function systems with division. Moreover, we introduce a new fractal recognition method based on a dependence graph obtained from the partitioned iterated function system. The proposed method uses local analysis of the shape, which improves the recognition rate. The effectiveness of our method is shown on two test databases. The first one was created by the authors and the second one is the MPEG7 CE-Shape-1 PartB database. The obtained results show that the proposed methodology has led to a significant improvement in the recognition rate.
Fractals | 2014
Krzysztof Gdawiec
In the paper, we generalized the idea of circle inversion to star-shaped sets and used the generalized inversion to replace the circle inversion transformation in the algorithm for the generation of the circle inversion fractals. In this way, we obtained the star-shaped set inversion fractals. The examples that we have presented show that we were able to obtain very diverse fractal patterns by using the proposed extension and that these patterns are different from those obtained with the circle inversion method. Moreover, because circles are star-shaped sets, the proposed generalization allows us to deform the circle inversion fractals in a very easy and intuitive way.
international symposium on visual computing | 2011
Krzysztof Gdawiec; Wiesław Kotarski; Agnieszka Lisowska
The aim of this paper is to present some modifications of the orbits generation algorithm of dynamical systems. The well-known Picard iteration is replaced by the more general one - Krasnosielskij iteration. Instead of one dynamical system, a set of them may be used. The orbits produced during the iteration process can be modified with the help of a probabilistic factor. By the use of aesthetic orbits generation of dynamical systems one can obtain unrepeatable collections of nicely looking patterns. Their geometry can be enriched by the use of the three colouring methods. The results of the paper can inspire graphic designers who may be interested in subtle aesthetic patterns created automatically.
ICMMI | 2009
Krzysztof Gdawiec
One of approaches in pattern recognition is the use of fractal geometry. The property of the self-similarity of the fractals has been used as feature in several pattern recognition methods. In this paper we present a new fractal recognition method which we will use in recognition of 2D shapes. As fractal features we used Partitioned Iterated Function System (PIFS). From the PIFS code we extract mappings vectors and numbers of domain transformations used in fractal image compression. These vectors and numbers are later used as features in the recognition procedure using a normalized similarity measure. The effectiveness of our method is shown on two test databases. The first database was created by the author and the second one is MPEG7 CE-Shape-1PartB database.
Computer Graphics Forum | 2017
Krzysztof Gdawiec
In this paper, we generalize the idea of star‐shaped set inversion fractals using iterations known from fixed point theory. We also extend the iterations from real parameters to so‐called q‐system numbers and proposed the use of switching processes. All the proposed generalizations allowed us to obtain new and diverse fractal patterns that can be used, e.g. as textile and ceramics patterns. Moreover, we show that in the chaos game for iterated function systems—which is similar to the inversion fractals generation algorithm—the proposed generalizations do not give interesting results.
international conference on computer vision and graphics | 2014
Krzysztof Gdawiec
Polynomiography is a method of visualization of complex polynomial root finding process. One of the applications of polynomiography is generation of aesthetic patterns. In this paper, we present two new algorithms for polynomiograph rendering that allow to obtain new diverse patterns. The algorithms are based on the ideas used to render the well known Mandelbrot and Julia sets. The results obtained with the proposed algorithms can enrich the functionality of the existing polynomiography software.
International Journal of Applied Mathematics and Computer Science | 2017
Krzysztof Gdawiec
Abstract Aesthetic patterns are widely used nowadays, e.g., in jewellery design, carpet design, as textures and patterns on wallpapers, etc. Most of the work during the design stage is carried out by a designer manually. Therefore, it is highly useful to develop methods for aesthetic pattern generation. In this paper, we present methods for generating aesthetic patterns using the dynamics of a discrete dynamical system. The presented methods are based on the use of various iteration processes from fixed point theory (Mann, S, Noor, etc.) and the application of an affine combination of these iterations. Moreover, we propose new convergence tests that enrich the obtained patterns. The proposed methods generate patterns in a procedural way and can be easily implemented on the GPU. The presented examples show that using the proposed methods we are able to obtain a variety of interesting patterns. Moreover, the numerical examples show that the use of the GPU implementation with shaders allows the generation of patterns in real time and the speed-up (compared with a CPU implementation) ranges from about 1000 to 2500 times.
Applied Mathematics and Computation | 2017
Krzysztof Gdawiec; Wiesław Kotarski
Survey of fixed point iteration processes.Extension of the pseudo-Newton method idea to other root finding methods.Modifications of the MMP-methods and their convergence visualizations.Non-trivial and intriguing polynomiographs have been obtained. In this paper, an iteration process, referred to in short as MMP, will be considered. This iteration is related to finding the maximum modulus of a complex polynomial over a unit disc on the complex plane creating intriguing images. Kalantari calls these images polynomiographs independently from whether they are generated by the root finding or maximum modulus finding process applied to any polynomial. We show that the images can be easily modified using different MMP methods (pseudo-Newton, MMP-Householder, methods from the MMP-Basic, MMP-Parametric Basic or MMP-EulerSchrder Families of Iterations) with various kinds of non-standard iterations. Such images are interesting from three points of views: scientific, educational and artistic. We present the results of experiments showing automatically generated non-trivial images obtained for different modifications of root finding MMP-methods. The colouring by iteration reveals the dynamic behaviour of the used root finding process and its speed of convergence. The results of the present paper extend Kalantaris recent results in finding the maximum modulus of a complex polynomial based on Newtons process with the Picard iteration to other MMP-processes with various non-standard iterations.