Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Krzysztof J. Kurzydłowski is active.

Publication


Featured researches published by Krzysztof J. Kurzydłowski.


Journal of Biomedical Materials Research Part B | 2010

Highly porous titanium scaffolds for orthopaedic applications

Bogdan Dabrowski; Wojciech Swieszkowski; Dirk Godlinski; Krzysztof J. Kurzydłowski

For many years, the solid metals and their alloys have been widely used for fabrication of the implants replacing hard human tissues or their functions. To improve fixation of solid implants to the surrounding bone tissues, the materials with porous structures have been introduced. By tissue ingrowing into a porous structure of metallic implant, the bonding between the implant and the bone has been obtained. Substantial pore interconnectivity, in metallic implants, allows extensive body fluid transport through the porous implant. This can provoke bone tissue ingrowth, consequently, leading to the development of highly porous metallic implants, which could be used as scaffolds in bone tissue engineering. The goal of this study was to develop and then investigate properties of highly porous titanium structures received from powder metallurgy process. The properties of porous titanium samples, such as microstructure, porosity, Youngs modulus, strength, together with permeability and corrosion resistance were investigated. Porous titanium scaffolds with nonhomogeneous distribution of interconnected pores with pore size in the range up to 600 μm in diameter and a total porosity in the range up to 75% were developed. The relatively high permeability was observed for samples with highest values of porosity. Comparing to cast titanium, the porous titanium was low resistant to corrosion. The mechanical parameters of the investigated samples were similar to those for cancellous bone. The development of high-porous titanium material shows high potential to be modern material for creating a 3D structure for bone regeneration and implant fixation.


Journal of Biomedical Materials Research Part B | 2012

Electrospun bio‐composite P(LLA‐CL)/collagen I/collagen III scaffolds for nerve tissue engineering

Ewa Kijeńska; Molamma P. Prabhakaran; Wojciech Swieszkowski; Krzysztof J. Kurzydłowski; Seeram Ramakrishna

One of the biggest challenges in peripheral nerve tissue engineering is to create an artificial nerve graft that could mimic the extracellular matrix (ECM) and assist in nerve regeneration. Bio-composite nanofibrous scaffolds made from synthetic and natural polymeric blends provide suitable substrate for tissue engineering and it can be used as nerve guides eliminating the need of autologous nerve grafts. Nanotopography or orientation of the fibers within the scaffolds greatly influences the nerve cell morphology and outgrowth, and the alignment of the fibers ensures better contact guidance of the cells. In this study, poly (L-lactic acid)-co-poly(ε-caprolactone) or P(LLA-CL), collagen I and collagen III are utilized for the fabrication of nanofibers of different compositions and orientations (random and aligned) by electrospinning. The morphology, mechanical, physical, and chemical properties of the electrospun scaffolds along with their biocompatibility using C17.2 nerve stem cells are studied to identify the suitable material compositions and topography of the electrospun scaffolds required for peripheral nerve regeneration. Aligned P(LLA-CL)/collagen I/collagen III nanofibrous scaffolds with average diameter of 253 ± 102 nm were fabricated and characterized with a tensile strength of 11.59 ± 1.68 MPa. Cell proliferation studies showed 22% increase in cell proliferation on aligned P(LLA-CL)/collagen I/collagen III scaffolds compared with aligned pure P(LLA-CL) scaffolds. Results of our in vitro cell proliferation, cell-scaffold interaction, and neurofilament protein expression studies demonstrated that the electrospun aligned P(LLA-CL)/collagen I/collagen III nanofibrous scaffolds mimic more closely towards the ECM of nerve and have great potential as a substrate for accelerated regeneration of the nerve.


Materials Science and Engineering: C | 2014

Electrochemical and cellular behavior of ultrafine-grained titanium in vitro

H. Maleki-Ghaleh; K. Hajizadeh; Afra Hadjizadeh; M. S. Shakeri; S. Ghobadi Alamdari; S. Masoudfar; E. Aghaie; M. Javidi; J. Zdunek; Krzysztof J. Kurzydłowski

The electrochemical and cellular behavior of commercially pure titanium (CP-Ti) with both ultrafine-grained (UFG) and coarse-grained (CG) microstructure was evaluated in this study. Equal channel angular pressing was used to produce the UFG structure titanium. Polarization and electrochemical impedance tests were carried out in a simulated body fluid (SBF) at 37°C. Cellular behaviors of samples were assessed using fibroblast cells. Results of the investigations illustrate the improvement of both corrosion and biological behavior of UFG CP-Ti in comparison with the CG counterpart.


Journal of Materials Chemistry B | 2013

An extreme biomimetic approach: hydrothermal synthesis of β-chitin/ZnO nanostructured composites

Marcin Wysokowski; Mykhailo Motylenko; Hartmut Stöcker; Vasilii V. Bazhenov; Enrico Langer; Anna Dobrowolska; Katarzyna Czaczyk; Roberta Galli; Allison L. Stelling; Thomas Behm; Łukasz Klapiszewski; Damian Ambrożewicz; Magdalena Nowacka; S. L. Molodtsov; Barbara Abendroth; Dirk C. Meyer; Krzysztof J. Kurzydłowski; Teofil Jesionowski; Hermann Ehrlich

β-Chitinous scaffolds isolated from the skeleton of marine cephalopod Sepia officinalis were used as a template for the in vitro formation of ZnO under conditions (70 °C) which are extreme for biological materials. Novel β-chitin/ZnO film-like composites were prepared for the first time by hydrothermal synthesis, and were thoroughly characterized using numerous analytical methods including Raman spectroscopy, HR-TEM and XRD. We demonstrate the growth of hexagonal ZnO nanocrystals on the β-chitin substrate. Our chitin/ZnO composites presented in this work show antibacterial properties against Gram positive bacteria and can be employed for development of inorganic-organic wound dressing materials.


Nano Research | 2015

Extreme biomimetic approach for developing novel chitin-GeO2 nanocomposites with photoluminescent properties

Marcin Wysokowski; Mykhailo Motylenko; Jan Beyer; Anna A. Makarova; Hartmut Stöcker; Juliane Walter; Roberta Galli; Sabine Kaiser; D. V. Vyalikh; Vasilii V. Bazhenov; Iaroslav Petrenko; Allison L. Stelling; S. L. Molodtsov; Dawid Stawski; Krzysztof J. Kurzydłowski; Enrico Langer; Mikhail V. Tsurkan; Teofil Jesionowski; Johannes Heitmann; Dirk C. Meyer; Hermann Ehrlich

This work presents an extreme biomimetics route for the creation of nanostructured biocomposites utilizing a chitinous template of poriferan origin. The specific thermal stability of the nanostructured chitinous template allowed for the formation under hydrothermal conditions of a novel germanium oxide-chitin composite with a defined nanoscale structure. Using a variety of analytical techniques (FTIR, Raman, energy dispersive X-ray (EDX), near-edge X-ray absorption fine structure (NEXAFS), and photoluminescence (PL) spectroscopy, EDS-mapping, selected area for the electron diffraction pattern (SAEDP), and transmission electron microscopy (TEM)), we showed that this bioorganic scaffold induces the growth of GeO2 nanocrystals with a narrow (150–300 nm) size distribution and predominantly hexagonal phase, demonstrating the chitin template’s control over the crystal morphology. The formed GeO2–chitin composite showed several specific physical properties, such as a striking enhancement in photoluminescence exceeding values previously reported in GeO2-based biomaterials. These data demonstrate the potential of extreme biomimetics for developing new-generation nanostructured materials.


International Journal of Applied Mathematics and Computer Science | 2008

Image Based Analysis of Complex Microstructures of Engineering Materials

Tomasz Wejrzanowski; Wojciech Spychalski; Krzysztof Rozniatowski; Krzysztof J. Kurzydłowski

Image Based Analysis of Complex Microstructures of Engineering Materials The paper presents various methods for quantitative description of material structures. The main focus is on direct methods of description based on image analysis. In particular, techniques for the estimation of the size, shape and spatial distribution of structural elements observed by different microscopic techniques are described. The application of these methods for the characterization of the structures of engineering materials is demonstrated on a stainless steel used in petrochemical installations. It is shown that the methods applied are useful for the assessment of service degradation of materials.


Journal of Thermal Analysis and Calorimetry | 2013

The effect of carbon nanotubes on epoxy matrix nanocomposites

Ewelina Ciecierska; Anna Boczkowska; Krzysztof J. Kurzydłowski; Iosif D. Rosca; Suong V. Hoa

The paper concerns thermal properties of epoxy/nanotubes composites for aircraft application. In this work, influence of carbon nanotubes on thermal stability, thermal conductivity, and crosslinking density of epoxy matrix was determined. Three kinds of nanotubes were used: non-modified with 1- and 1.5-μm length, and 1-μm length modified with amino groups. Scanning electron microscopy observations were done for examining dispersion of nanotubes in the epoxy matrix. Glass transition temperature (Tg) was readout from differential scanning calorimetry. From dynamic mechanical analysis, crosslinking density was calculated for epoxy and its composites. Also, thermogravimetric analysis was done to determine influence of nanotubes addition on thermal stability and decomposition process of composites. Activation energy was calculated from TGA curves by Flynn–Wall–Ozawa method. Thermal diffusivity was also measured. SEM images proved the uniform dispersion of carbon nanotubes without any agglomerates. It was found that nanotubes modified with amino groups lead to the increase of epoxy matrix crosslinking density. The significant increase in Tg was also observed. On the other hand, addition of carbon nanotubes leads to the decrease of thermal stability of polymer due to the increase of thermal diffusivity.


International Journal of Nanomedicine | 2013

Highly biocompatible, nanocrystalline hydroxyapatite synthesized in a solvothermal process driven by high energy density microwave radiation.

Dariusz Smolen; Tadeusz Chudoba; Iwona Malka; Aleksandra Kedzierska; Witold Lojkowski; Wojciech Swieszkowski; Krzysztof J. Kurzydłowski; Małgorzata Kolodziejczyk-Mierzynska; Małgorzata Lewandowska-Szumieł

A microwave, solvothermal synthesis of highly biocompatible hydroxyapatite (HAp) nanopowder was developed. The process was conducted in a microwave radiation field having a high energy density of 5 W/mL and over a time less than 2 minutes. The sample measurements included: powder X-ray diffraction, density, specific surface area, and chemical composition. The morphology and structure were investigated by scanning electron microscopy as well as transmission electron microscopy (TEM). The thermal behavior analysis was conducted using a simultaneous thermal analysis technique coupled with quadruple mass spectrometry. Additionally, Fourier transform infrared spectroscopy tests of heated samples were performed. A degradation test and a biocompatibility study in vitro using human osteoblast cells were also conducted. The developed method enables the synthesis of pure, fully crystalline hexagonal HAp nanopowder with a specific surface area close to 240 m2/g and a Ca/P molar ratio equal to 1.57. TEM measurements showed that this method results in particles with an average grain size below 6 nm. A 28-day degradation test conducted according to the ISO standard indicated a 22% loss of initial weight and a calcium ion concentration at 200 μmol/dm3 in the tris(hydroxymethyl)aminomethane hydrochloride test solution. The cytocompatibility of the obtained material was confirmed in a culture of human bone derived cells, both in an indirect test using the material extract, and in direct contact. A quantitative analysis was based on the 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide. Viability assay as well as on DNA content measurements in the PicoGreen test. Indirect observations were performed at one point in time according to the ISO standard for in vitro cytotoxicity (ie, after 24 hours of cell exposure to the extracts). The direct contact tests were completed at three time points: after 24 hours, on day 7, and on day 14 of a culture in an osteogenic medium. All of the tests revealed good tolerance of cells toward the material; this was also shown by means of live/dead fluorescent staining. Both quantitative results and morphological observations revealed much better cell tolerance toward the obtained HAp compared to commercially available HAp NanoXIM, which was used as a reference material.


Acta Biomaterialia | 2010

Candidate bone-tissue-engineered product based on human-bone-derived cells and polyurethane scaffold.

Piotr Woźniak; Monika Bil; Joanna Ryszkowska; Piotr Wychowański; Edyta Wrobel; Anna Ratajska; Grażyna Hoser; Jacek Przybylski; Krzysztof J. Kurzydłowski; Małgorzata Lewandowska-Szumieł

Biodegradable polyurethanes (PURs) have recently been investigated as candidate materials for bone regenerative medicine. There are promising reports documenting the biocompatibility of selected PURs in vivo and the tolerance of certain cells toward PURs in vitro - potentially to be used as scaffolds for tissue-engineered products (TEPs). The aim of the present study was to take a step forward and create a TEP using human osteogenic cells and a polyurethane scaffold, and to evaluate the quality of the obtained TEP in vivo. Human-bone-derived cells (HBDCs) were seeded and cultured on polyurethane scaffolds in a bioreactor for 14 days. The TEP examination in vitro was based on the evaluation of cell number, cell phenotype and cell distribution within the scaffold. TEPs and control samples (scaffolds without cells) were implanted subcutaneously into SCID mice for 4 and 13 weeks. Explants harvested from the animals were examined using histological and immunohistochemical methods. They were also tested in mechanical trials. It was found that dynamic conditions for cell seeding and culture enable homogeneous distribution, maintaining the proliferative potential and osteogenic phenotype of the HBDCs cultured on polyurethane scaffolds. It was also found that HBDCs implanted as a component of TEP survived and kept their ability to produce the specific human bone extracellular matrix, which resulted in higher mechanical properties of the harvested explants when preseeded with HBDCs. The whole system, including the investigated PUR scaffold and the method of human cell seeding and culture, is recommended as a candidate bone TEP.


Journal of Physics: Condensed Matter | 2008

Structural changes of silicon upon high-energy milling investigated by Raman spectroscopy

P. Unifantowicz; S. Vaucher; Małgorzata Lewandowska; Krzysztof J. Kurzydłowski

This study showed pronounced changes in the Raman scattering of silicon powder during high-energy ball milling. The powders were milled for 1–18 h in a steel ball mill in argon. The approximate pressure imposed on particles was 2 GPa. The spectra of the as-milled powders were compared with the initial silicon. It was found from the Raman peak position shifts that milling generated strains in the silicon lattice, bringing about a transformation of cubic silicon to tetragonal silicon and amorphization. The relative amount of new phases was determined from the area under the measured Raman peaks. (Some figures in this article are in colour only in the electronic version)

Collaboration


Dive into the Krzysztof J. Kurzydłowski's collaboration.

Top Co-Authors

Avatar

Małgorzata Lewandowska

Warsaw University of Technology

View shared research outputs
Top Co-Authors

Avatar

Halina Garbacz

Warsaw University of Technology

View shared research outputs
Top Co-Authors

Avatar

Tomasz Wejrzanowski

Warsaw University of Technology

View shared research outputs
Top Co-Authors

Avatar

J. Mizera

Warsaw University of Technology

View shared research outputs
Top Co-Authors

Avatar

Zbigniew Pakiela

Warsaw University of Technology

View shared research outputs
Top Co-Authors

Avatar

Hubert Matysiak

Warsaw University of Technology

View shared research outputs
Top Co-Authors

Avatar

Justyna Grzonka

Warsaw University of Technology

View shared research outputs
Top Co-Authors

Avatar

Katarzyna Konopka

Warsaw University of Technology

View shared research outputs
Top Co-Authors

Avatar

W. Pachla

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wojciech Swieszkowski

Warsaw University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge