Krzysztof Kobielak
University of Southern California
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Krzysztof Kobielak.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Krzysztof Kobielak; Nicole Stokes; June dela Cruz; Lisa Polak; Elaine Fuchs
During the hair cycle, follicle stem cells (SCs) residing in a specialized niche called the “bulge” undergo bouts of quiescence and activation to cyclically regenerate new hairs. Developmental studies have long implicated the canonical bone morphogenetic protein (BMP) pathway in hair follicle (HF) determination and differentiation, but how BMP signaling functions in the hair follicle SC niche remains unknown. Here, we use loss and gain of function studies to manipulate BMP signaling in the SC niche. We show that when the Bmpr1a gene is conditionally ablated, otherwise quiescent SCs are activated to proliferate, causing an expansion of the niche and loss of slow-cycling cells. Surprisingly, follicle SCs are not lost, however, but rather, they generate long-lived, tumor-like branches that express Sox4, Lhx2, and Sonic Hedgehog but fail to terminally differentiate to make hair. A key component of BMPR1A-deficient SCs is their elevated levels of both Lef1 and β-catenin, which form a bipartite transcription complex required for initiation of the hair cycle. Although β-catenin can be stabilized by Wnt signaling, we show that BMPR1A deficiency enhances β-catenin stabilization in the niche through a pathway involving PTEN inhibition and PI3K/AKT activation. Conversely, sustained BMP signaling in the SC niche blocks activation and promotes premature hair follicle differentiation. Together, these studies reveal the importance of balancing BMP signaling in the SC niche.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Eve Kandyba; Yvonne Leung; Yi-Bu Chen; Randall B. Widelitz; Cheng-Ming Chuong; Krzysztof Kobielak
Hair follicles facilitate the study of stem cell behavior because stem cells in progressive activation stages, ordered within the follicle architecture, are capable of cyclic regeneration. To study the gene network governing the homeostasis of hair bulge stem cells, we developed a Keratin 15-driven genetic model to directly perturb molecular signaling in the stem cells. We visualize the behavior of these modified stem cells, evaluating their hair-regenerating ability and profile their molecular expression. Bone morphogenetic protein (BMP)-inactivated stem cells exhibit molecular profiles resembling those of hair germs, yet still possess multipotentiality in vivo. These cells also exhibit up-regulation of Wnt7a, Wnt7b, and Wnt16 ligands and Frizzled (Fzd) 10 receptor. We demonstrate direct transcriptional modulation of the Wnt7a promoter. These results highlight a previously unknown intra-stem cell antagonistic competition, between BMP and Wnt signaling, to balance stem cell activity. Reduced BMP signaling and increased Wnt signaling tilts each stem cell toward a hair germ fate and, vice versa, based on a continuous scale dependent on the ratio of BMP/Wnt activity. This work reveals one more hierarchical layer regulating stem cell homeostasis beneath the stem cell–dermal papilla-based epithelial–mesenchymal interaction layer and the hair follicle–intradermal adipocyte-based tissue interaction layer. Although hierarchical layers are all based on BMP/Wnt signaling, the multilayered control ensures that all information is taken into consideration and allows hair stem cells to sum up the total activators/inhibitors involved in making the decision of activation.
Stem Cells | 2014
Eve Kandyba; Krzysztof Kobielak
The hair follicle (HF) is an exceptional mini‐organ to study the mechanisms which regulate HF morphogenesis, cycling, hair follicle stem cell (hfSCs) homeostasis, and progeny differentiation. During morphogenesis, Wnt signaling is well‐characterized in the initiation of HF patterning but less is known about which particular Wnt ligands are required and whether individual Wnt ligands act in an indispensable or redundant manner during postnatal hfSCs anagen onset and HF cycle progression. Previously, we described the function of the bone morphogenetic protein (BMP) signaling target gene WNT7a in intrinsic regulation of hfSCs homeostasis in vivo. Here, we investigated the role of Wnt7b, which was also intrinsically upregulated in hfSCs during physiological and precocious anagen after BMP inhibition in vivo. We demonstrated Wnt7b to be a direct target of canonical BMP signaling in hfSCs and using Wnt7b conditional gene targeting during HF morphogenesis revealed disrupted HF cycling including a shorter anagen, premature catagen onset with overall shorter hair production, and diminished HF differentiation marker expression. Additionally, we observed that postnatal ablation of Wnt7b resulted in delayed HF activation, affecting both the hair germ and bulge hfSCs but still maintaining a two‐step sequence of HF stimulation. Interestingly, Wnt7b cKO hfSCs participated in reformation of the new HF bulge, but with slower self‐renewal. These findings demonstrate the importance of intrinsic Wnt7b expression in hfSCs regulation and normal HF cycling and surprisingly reveal a nonredundant role for Wnt7b in the control of HF anagen length and catagen entry which was not compensated by other Wnt ligands. Stem Cells 2014;32:886–901
PLOS ONE | 2013
Yvonne Leung; Eve Kandyba; Yi-Bu Chen; Seth W. Ruffins; Krzysztof Kobielak
Slow cycling is a common feature shared among several stem cells (SCs) identified in adult tissues including hair follicle and cornea. Recently, existence of unipotent SCs in basal and lumenal layers of sweat gland (SG) has been described and label retaining cells (LRCs) have also been localized in SGs; however, whether these LRCs possess SCs characteristic has not been investigated further. Here, we used a H2BGFP LRCs system for in vivo detection of infrequently dividing cells. This system allowed us to specifically localize and isolate SCs with label-retention and myoepithelial characteristics restricted to the SG proximal acinar region. Using an alternative genetic approach, we demonstrated that SG LRCs expressed keratin 15 (K15) in the acinar region and lineage tracing determined that K15 labeled cells contributed long term to the SG structure but not to epidermal homeostasis. Surprisingly, wound healing experiments did not activate proximal acinar SG cells to participate in epidermal healing. Instead, predominantly non-LRCs in the SG duct actively divided, whereas the majority of SG LRCs remained quiescent. However, when we further challenged the system under more favorable isolated wound healing conditions, we were able to trigger normally quiescent acinar LRCs to trans-differentiate into the epidermis and adopt its long term fate. In addition, dissociated SG cells were able to regenerate SGs and, surprisingly, hair follicles demonstrating their in vivo plasticity. By determining the gene expression profile of isolated SG LRCs and non-LRCs in vivo, we identified several Bone Morphogenetic Protein (BMP) pathway genes to be up-regulated and confirmed a functional requirement for BMP receptor 1A (BMPR1A)-mediated signaling in SG formation. Our data highlight the existence of SG stem cells (SGSCs) and their primary importance in SG homeostasis. It also emphasizes SGSCs as an alternative source of cells in wound healing and their plasticity for regenerating different skin appendages.
Stem Cells | 2014
Eve Kandyba; Virginia M. Hazen; Agnieszka Kobielak; Samantha J. Butler; Krzysztof Kobielak
Hair follicles (HFs) are regenerative miniorgans that offer a highly informative model system to study the regulatory mechanisms of hair follicle stem cells (hfSCs) homeostasis and differentiation. Bone morphogenetic protein (BMP) signaling is key in both of these processes, governing hfSCs quiescence in the bulge and differentiation of matrix progenitors. However, whether canonical or noncanonical pathways of BMP signaling are responsible for these processes remains unresolved. Here, we conditionally ablated two canonical effectors of BMP signaling, Smad1 and Smad5 during hair morphogenesis and postnatal cycling in mouse skin. Deletion of Smad1 and Smad5 (dKO) in the epidermis during morphogenesis resulted in neonatal lethality with lack of visible whiskers. Interestingly, distinct patterns of phospho‐Smads (pSmads) activation were detected with pSmad8 restricted to epidermis and pSmad1 and pSmad5 exclusively activated in HFs. Engraftment of dKO skin revealed retarded hair morphogenesis and failure to differentiate into visible hair. The formation of the prebulge and bulge reservoir for quiescent hfSCs was precluded in dKO HFs which remained in prolonged anagen. Surprisingly, in postnatal telogen HFs, pSmad8 expression was no longer limited to epidermis and was also present in dKO bulge hfSCs and matrix progenitors. Although pSmad8 activity alone could not prevent dKO hfSCs precocious anagen activation, it sustained efficient postnatal differentiation and regeneration of visible hairs. Together, our data suggest a pivotal role for canonical BMP signaling demonstrating distinguished nonoverlapping function of pSmad8 with pSmad1 and pSmad5 in hfSCs regulation and hair morphogenesis but a redundant role in adult hair progenitors differentiation. Stem Cells 2014;32:534–547
Proceedings of the National Academy of Sciences of the United States of America | 2014
Yvonne Leung; Eve Kandyba; Yi-Bu Chen; Seth W. Ruffins; Cheng-Ming Chuong; Krzysztof Kobielak
Significance Skin appendages including hair follicles, sweat glands, and nails offer a source of regenerative support following injury. Here, we focus on the regenerative potential of the peri-nail region and reveal a population of K15-positive, label retaining cells (LRCs) within the nail proximal fold with self-renewal capabilities. Physiologically, these cells display bifunctional stem cell qualities and contribute to both the nail structure and peri-nail epidermis long term; however, upon injury, the homeostatic balance is tilted toward nail regeneration. Molecularly, reduced bone morphogenetic protein signaling tilts nail keratinocytes toward an epidermal fate. Collectively, we demonstrate the plasticity of these stem cells: bifunctional under normal homeostasis, but adaptive in response to wounding. Such principles may exist in the interface between other ectodermal organs and skin. Regulation of adult stem cells (SCs) is fundamental for organ maintenance and tissue regeneration. On the body surface, different ectodermal organs exhibit distinctive modes of regeneration and the dynamics of their SC homeostasis remain to be unraveled. A slow cycling characteristic has been used to identify SCs in hair follicles and sweat glands; however, whether a quiescent population exists in continuously growing nails remains unknown. Using an in vivo label retaining cells (LRCs) system, we detected an unreported population of quiescent cells within the basal layer of the nail proximal fold, organized in a ring-like configuration around the nail root. These nail LRCs express the hair stem cell marker, keratin 15 (K15), and lineage tracing show that these K15-derived cells can contribute to both the nail structure and peri-nail epidermis, and more toward the latter. Thus, this stem cell population is bifunctional. Upon nail plucking injury, the homeostasis is tilted with these SCs dominantly delivering progeny to the nail matrix and differentiated nail plate, demonstrating their plasticity to adapt to wounding stimuli. Moreover, in vivo engraftment experiments established that transplanted nail LRCs can actively participate in functional nail regeneration. Transcriptional profiling of isolated nail LRCs revealed bone morphogenetic protein signaling favors nail differentiation over epidermal fate. Taken together, we have found a previously unidentified ring-configured population of bifunctional SCs, located at the interface between the nail appendage organ and adjacent epidermis, which physiologically display coordinated homeostatic dynamics but are capable of rediverting stem cell flow in response to injury.
Stem Cells | 2014
Hongjun Zhang; Keerthi Boddupally; Eve Kandyba; Krzysztof Kobielak; Yi-Bu Chen; Sutao Zu; Rashi Krishnan; Uttam K. Sinha; Agnieszka Kobielak
Adult stem cells (SCs) are important to maintain homeostasis of tissues including several mini‐organs like hair follicles and sweat glands. However, the existence of stem cells in minor salivary glands (SGs) is largely unexplored. In vivo histone2B green fluorescent protein pulse chase strategy has allowed us to identify slow‐cycling, label‐retaining cells (LRCs) of minor SGs that preferentially localize in the basal layer of the lower excretory duct with a few in the acini. Engraftment of isolated SG LRC in vivo demonstrated their potential to differentiate into keratin 5 (basal layer marker) and keratin 8 (luminal layer marker)‐positive structures. Transcriptional analysis revealed activation of TGFβ1 target genes in SG LRC and BMP signaling in SG progenitors. We also provide evidence that minor SGSCs are sensitive to tobacco‐derived tumor‐inducing agent and give rise to tumors resembling low grade adenoma. Our data highlight for the first time the existence of minor SG LRCs with stem cells characteristic and emphasize the role of transforming growth factor beta (TGFβ) pathway in their maintenance. Stem Cells 2014;32:2267–2277
Journal of Investigative Dermatology | 2014
Michael W. Hughes; Ting-Xin Jiang; Sung-Jan Lin; Yvonne Leung; Krzysztof Kobielak; Randall B. Widelitz; Cheng-Ming Chuong
Histone deacetylases (HDAC) are present in the epidermal layer of the skin, outer root sheath and hair matrix. To investigate how histone acetylation affects skin morphogenesis and homeostasis, mice were generated with a K14 promoter-mediated reduction of Hdac1 or Hdac2. The skin of HDAC1 null (K14-Cre Hdac1cKO/cKO) mice exhibited a spectrum of lesions including irregularly thickened interfollicular epidermis, alopecia, hair follicle dystrophy, claw dystrophy, and abnormal pigmentation. Hairs are sparse, short and intermittently coiled. The distinct pelage hair types are lost. During the first hair cycle, hairs are lost and replaced by dystrophic hair follicles with dilated infundibulae. The dystrophic hair follicle epithelium is stratified and positive for K14, involucrin, and TRP63 but negative for K10. Some dystrophic follicles are K15 positive but mature hair fiber keratins are absent. The digits form extra hyper-pigmented claws on the lateral sides. Hyper-pigmentation is observed in the interfollicular epithelium, the tail, and the feet. Hdac1 and Hdac2 dual transgenic mice (K14-Cre Hdac1cKO/cKO Hdac2+/cKO) have similar but more obvious abnormalities. These results show that suppression of epidermal HDAC activity leads to improper ectodermal organ morphogenesis, disrupted hair follicle regeneration and homeostasis, as well as indirect effects on pigmentation.
eLife | 2017
Qixuan Wang; Ji Won Oh; Hye Lim Lee; Anukriti Dhar; Tao Peng; Raul Ramos; Christian Fernando Guerrero-Juarez; Xiaojie Wang; Ran Zhao; Xiaoling Cao; Jonathan Le; Melisa A. Fuentes; Shelby C. Jocoy; Antoni R. Rossi; Brian Vu; Kim Pham; Xiaoyang Wang; Nanda Maya Mali; Jung Min Park; June Hyug Choi; Hyunsu Lee; Julien M.D. Legrand; Eve Kandyba; Jung Chul Kim; Moonkyu Kim; John Foley; Zhengquan Yu; Krzysztof Kobielak; Bogi Andersen; Kiarash Khosrotehrani
The control principles behind robust cyclic regeneration of hair follicles (HFs) remain unclear. Using multi-scale modeling, we show that coupling inhibitors and activators with physical growth of HFs is sufficient to drive periodicity and excitability of hair regeneration. Model simulations and experimental data reveal that mouse skin behaves as a heterogeneous regenerative field, composed of anatomical domains where HFs have distinct cycling dynamics. Interactions between fast-cycling chin and ventral HFs and slow-cycling dorsal HFs produce bilaterally symmetric patterns. Ear skin behaves as a hyper-refractory domain with HFs in extended rest phase. Such hyper-refractivity relates to high levels of BMP ligands and WNT antagonists, in part expressed by ear-specific cartilage and muscle. Hair growth stops at the boundaries with hyper-refractory ears and anatomically discontinuous eyelids, generating wave-breaking effects. We posit that similar mechanisms for coupled regeneration with dominant activator, hyper-refractory, and wave-breaker regions can operate in other actively renewing organs. DOI: http://dx.doi.org/10.7554/eLife.22772.001
Developmental Dynamics | 2015
Ang Li; Yung-Chih Lai; Seth Figueroa; Tian Yang; Randall B. Widelitz; Krzysztof Kobielak; Qing Nie; Cheng-Ming Chuong
Background: How tissue patterns form in development and regeneration is a fundamental issue remaining to be fully understood. The integument often forms repetitive units in space (periodic patterning) and time (cyclic renewal), such as feathers and hairs. Integument patterns are visible and experimentally manipulatable, helping us reveal pattern formative processes. Variability is seen in regional phenotypic specificities and temporal cycling at different physiological stages. Results: Here we show some cellular/molecular bases revealed by analyzing integument patterns. (1) Localized cellular activity (proliferation, rearrangement, apoptosis, differentiation) transforms prototypic organ primordia into specific shapes. Combinatorial positioning of different localized activity zones generates diverse and complex organ forms. (2) Competitive equilibrium between activators and inhibitors regulates stem cells through cyclic quiescence and activation. Conclusions: Dynamic interactions between stem cells and their adjacent niche regulate regenerative behavior, modulated by multi‐layers of macro‐environmental factors (dermis, body hormone status, and external environment). Genomics studies may reveal how positional information of localized cellular activity is stored. In vivo skin imaging and lineage tracing unveils new insights into stem cell plasticity. Principles of self‐assembly obtained from the integumentary organ model can be applied to help restore damaged patterns during regenerative wound healing and for tissue engineering to rebuild tissues. Developmental Dynamics 244:905–920, 2015.