Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Krzysztof Sobczak is active.

Publication


Featured researches published by Krzysztof Sobczak.


Science | 2009

Reversal of RNA dominance by displacement of protein sequestered on triplet repeat RNA.

Thurman M. Wheeler; Krzysztof Sobczak; John D. Lueck; Robert J. Osborne; Xiaoyan Lin; Robert T. Dirksen; Charles A. Thornton

Resisting Repeats A set of diseases, including myotonic dystrophy, are caused by the expansion of a simple repeat in genomic DNA, which, when transcribed into RNA, can be toxic to other cellular processes. Ameliorating the effects of this toxic, repeat-laden RNA may also relieve the symptoms of the disease. Wheeler et al. (p. 336; see the Perspective by Cooper) developed an antisense morpholino oligonucleotide complementary to the expanded repeats found in the myotonic dystrophy protein kinase messenger RNA (mRNA). The morpholino bound the repeats in vitro and displaced the inappropriately bound and sequestered RNA splicing factor, Muscleblind-like 1. In an in vivo mouse model for myotonic dystrophy, local injection of the morpholino corrected a number of cellular defects in muscle, including the alternative mRNA splicing of several genes, among them the muscle-specific chloride channel, CIC1, leading to a marked reduction in the myotonia. An antisense oligonucleotide ameliorates the symptoms of myotonic dystrophy in transgenic mice. Genomic expansions of simple tandem repeats can give rise to toxic RNAs that contain expanded repeats. In myotonic dystrophy, the expression of expanded CUG repeats (CUGexp) causes abnormal regulation of alternative splicing and neuromuscular dysfunction. We used a transgenic mouse model to show that derangements of myotonic dystrophy are reversed by a morpholino antisense oligonucleotide, CAG25, that binds to CUGexp RNA and blocks its interaction with muscleblind-like 1 (MBNL1), a CUGexp-binding protein. CAG25 disperses nuclear foci of CUGexp RNA and reduces the overall burden of this toxic RNA. As MBNL1 is released from sequestration, the defect of alternative splicing regulation is corrected, thereby restoring ion channel function. These findings suggest an alternative use of antisense methods, to inhibit deleterious interactions of proteins with pathogenic RNAs.


Nucleic Acids Research | 2007

Muscleblind-like 1 interacts with RNA hairpins in splicing target and pathogenic RNAs

Yuan Yuan; Sarah A. Compton; Krzysztof Sobczak; Myrna G. Stenberg; Charles A. Thornton; Jack D. Griffith; Maurice S. Swanson

The MBNL and CELF proteins act antagonistically to control the alternative splicing of specific exons during mammalian postnatal development. This process is dysregulated in myotonic dystrophy because MBNL proteins are sequestered by (CUG)n and (CCUG)n RNAs expressed from mutant DMPK and ZNF9 genes, respectively. While these observations predict that MBNL proteins have a higher affinity for these pathogenic RNAs versus their normal splicing targets, we demonstrate that MBNL1 possesses comparably high affinities for (CUG)n and (CAG)n RNAs as well as a splicing target, Tnnt3. Mapping of a MBNL1-binding site upstream of the Tnnt3 fetal exon indicates that a preferred binding site for this protein is a GC-rich RNA hairpin containing a pyrimidine mismatch. To investigate how pathogenic RNAs sequester MBNL1 in DM1 cells, we used a combination of chemical/enzymatic structure probing and electron microscopy to determine that MBNL1 forms a ring-like structure which binds to the dsCUG helix. While the MBNL1 N-terminal region is required for RNA binding, the C-terminal region mediates homotypic interactions which may stabilize intra- and/or inter-ring interactions. Our results provide a mechanistic basis for dsCUG-induced MBNL1 sequestration and highlight a striking similarity in the binding sites for MBNL proteins on splicing precursor and pathogenic RNAs.


Journal of the American Chemical Society | 2008

Dynamic combinatorial selection of molecules capable of inhibiting the (CUG) repeat RNA-MBNL1 interaction in vitro: discovery of lead compounds targeting myotonic dystrophy (DM1).

Peter C. Gareiss; Krzysztof Sobczak; Brian R. McNaughton; Prakash B. Palde; Charles A. Thornton; Benjamin L. Miller

Myotonic dystrophy type 1 (DM1), the most common form of muscular dystrophy in adults, is an RNA-mediated disease. Dramatically expanded (CUG) repeats accumulate in nuclei and sequester RNA-binding proteins such as the splicing regulator MBNL1. We have employed resin-bound dynamic combinatorial chemistry (RBDCC) to identify the first examples of compounds able to inhibit MBNL1 binding to (CUG) repeat RNA. Screening an RBDCL with a theoretical diversity of 11 325 members yielded several molecules with significant selectivity for binding to (CUG) repeat RNA over other sequences. These compounds were also able to inhibit the interaction of GGG-(CUG)(109)-GGG RNA with MBNL1 in vitro, with K(i) values in the low micromolar range.


Journal of the American Chemical Society | 2009

Rational design of ligands targeting triplet repeating transcripts that cause RNA dominant disease: Application to myotonic muscular dystrophy type 1 and spinocerebellar ataxia type 3

Alexei Pushechnikov; Melissa M. Lee; Jessica L. Childs-Disney; Krzysztof Sobczak; Jonathan M. French; Charles A. Thornton; Matthew D. Disney

Herein, we describe the design of high affinity ligands that bind expanded rCUG and rCAG repeat RNAs expressed in myotonic dystrophy type 1 (DM1) and spinocerebellar ataxia type 3. These ligands also inhibit, with nanomolar IC(50) values, the formation of RNA-protein complexes that are implicated in both disorders. The expanded rCUG and rCAG repeats form stable RNA hairpins with regularly repeating internal loops in the stem and have deleterious effects on cell function. The ligands that bind the repeats display a derivative of the bisbenzimidazole Hoechst 33258, which was identified by searching known RNA-ligand interactions for ligands that bind the internal loop displayed in these hairpins. A series of 13 modularly assembled ligands with defined valencies and distances between ligand modules was synthesized to target multiple motifs in these RNAs simultaneously. The most avid binder, a pentamer, binds the rCUG repeat hairpin with a K(d) of 13 nM. When compared to a series of related RNAs, the pentamer binds to rCUG repeats with 4.4- to >200-fold specificity. Furthermore, the affinity of binding to rCUG repeats shows incremental gains with increasing valency, while the background binding to genomic DNA is correspondingly reduced. Then, it was determined whether the modularly assembled ligands inhibit the recognition of RNA repeats by Muscleblind-like 1 (MBNL1) protein, the expanded-rCUG binding protein whose sequestration leads to splicing defects in DM1. Among several compounds with nanomolar IC(50) values, the most potent inhibitor is the pentamer, which also inhibits the formation of rCAG repeat-MBNL1 complexes. Comparison of the binding data for the designed synthetic ligands and MBNL1 to repeating RNAs shows that the synthetic ligand is 23-fold higher affinity and more specific to DM1 RNAs than MBNL1. Further studies show that the designed ligands are cell permeable to mouse myoblasts. Thus, cell permeable ligands that bind repetitive RNAs have been designed that exhibit higher affinity and specificity for binding RNA than natural proteins. These studies suggest a general approach to targeting RNA, including those that cause RNA dominant disease.


Nucleic Acids Research | 2011

Mutant CAG repeats of Huntingtin transcript fold into hairpins, form nuclear foci and are targets for RNA interference

Mateusz de Mezer; Marzena Wojciechowska; Marek Napierala; Krzysztof Sobczak; Wlodzimierz J. Krzyzosiak

The CAG repeat expansions that occur in translated regions of specific genes can cause human genetic disorders known as polyglutamine (poly-Q)-triggered diseases. Huntington’s disease and spinobulbar muscular atrophy (SBMA) are examples of these diseases in which underlying mutations are localized near other trinucleotide repeats in the huntingtin (HTT) and androgen receptor (AR) genes, respectively. Mutant proteins that contain expanded polyglutamine tracts are well-known triggers of pathogenesis in poly-Q diseases, but a toxic role for mutant transcripts has also been proposed. To gain insight into the structural features of complex triplet repeats of HTT and AR transcripts, we determined their structures in vitro and showed the contribution of neighboring repeats to CAG repeat hairpin formation. We also demonstrated that the expanded transcript is retained in the nucleus of human HD fibroblasts and is colocalized with the MBNL1 protein. This suggests that the CAG repeats in the HTT mRNA adopt ds-like RNA conformations in vivo. The intracellular structure of the CAG repeat region of mutant HTT transcripts was not sufficiently stable to be protected from cleavage by an siRNA targeting the repeats and the silencing efficiency was higher for the mutant transcript than for its normal counterpart.


Human Molecular Genetics | 2009

Transcriptional and post-transcriptional impact of toxic RNA in myotonic dystrophy

Robert J. Osborne; Xiaoyan Lin; Stephen Welle; Krzysztof Sobczak; Jason R. O'Rourke; Maurice S. Swanson; Charles A. Thornton

Myotonic dystrophy type 1 (DM1) is an RNA dominant disease in which mutant transcripts containing an expanded CUG repeat (CUG(exp)) cause muscle dysfunction by interfering with biogenesis of other mRNAs. The toxic effects of mutant RNA are mediated partly through sequestration of splicing regulator Muscleblind-like 1 (Mbnl1), a protein that binds to CUG(exp) RNA. A gene that is prominently affected encodes chloride channel 1 (Clcn1), resulting in hyperexcitability of muscle (myotonia). To identify DM1-affected genes and study mechanisms for dysregulation, we performed global mRNA profiling in transgenic mice that express CUG(exp) RNA, when compared with Mbnl1 knockout and Clcn1 null mice. We found that the majority of changes induced by CUG(exp) RNA in skeletal muscle can be explained by reduced activity of Mbnl1, including many changes that are secondary to myotonia. The pathway most affected comprises genes involved in calcium signaling and homeostasis. Some effects of CUG(exp) RNA on gene expression are caused by abnormal alternative splicing or downregulation of Mbnl1-interacting mRNAs. However, several of the most highly dysregulated genes showed altered transcription, as indicated by parallel changes of the corresponding pre-mRNAs. These results support the idea that trans-dominant effects of CUG(exp) RNA on gene expression in this transgenic model may occur at the level of transcription, RNA processing and mRNA decay, and are mediated mainly but not entirely through sequestration of Mbnl1.


Human Molecular Genetics | 2012

Muscle weakness in myotonic dystrophy associated with misregulated splicing and altered gating of CaV1.1 calcium channel

Zhen Zhi Tang; Viktor Yarotskyy; Lan Wei; Krzysztof Sobczak; Masayuki Nakamori; Katy Eichinger; Richard T. Moxley; Robert T. Dirksen; Charles A. Thornton

Myotonic dystrophy type 1 and type 2 (DM1 and DM2) are genetic diseases in which mutant transcripts containing expanded CUG or CCUG repeats cause cellular dysfunction by altering the processing or metabolism of specific mRNAs and miRNAs. The toxic effects of mutant RNA are mediated partly through effects on proteins that regulate alternative splicing. Here we show that alternative splicing of exon 29 (E29) of Ca(V)1.1, a calcium channel that controls skeletal muscle excitation-contraction coupling, is markedly repressed in DM1 and DM2. The extent of E29 skipping correlated with severity of weakness in tibialis anterior muscle of DM1 patients. Two splicing factors previously implicated in DM1, MBNL1 and CUGBP1, participated in the regulation of E29 splicing. In muscle fibers of wild-type mice, the Ca(V)1.1 channel conductance and voltage sensitivity were increased by splice-shifting oligonucleotides that induce E29 skipping. In contrast to human DM1, expression of CUG-expanded RNA caused only a modest increase in E29 skipping in mice. However, forced skipping of E29 in these mice, to levels approaching those observed in human DM1, aggravated the muscle pathology as evidenced by increased central nucleation. Together, these results indicate that DM-associated splicing defects alter Ca(V)1.1 function, with potential for exacerbation of myopathy.


Annals of Neurology | 2013

Splicing biomarkers of disease severity in myotonic dystrophy.

Masayuki Nakamori; Krzysztof Sobczak; Araya Puwanant; Steve Welle; Katy Eichinger; Shree Pandya; Jeannne Dekdebrun; Chad Heatwole; Michael P. McDermott; Tian Chen; Melissa S. Cline; Rabi Tawil; Robert J. Osborne; Thurman M. Wheeler; Maurice S. Swanson; Richard T. Moxley; Charles A. Thornton

To develop RNA splicing biomarkers of disease severity and therapeutic response in myotonic dystrophy type 1 (DM1) and type 2 (DM2).


Journal of Biological Chemistry | 2010

Structural diversity of triplet repeat RNAs.

Krzysztof Sobczak; Gracjan Michlewski; Mateusz de Mezer; Elzbieta Kierzek; Jacek Krol; Marta Olejniczak; Ryszard Kierzek; Wlodzimierz J. Krzyzosiak

Tandem repeats of various trinucleotide motifs are present in the human transcriptome, but the functions of these regular sequences, which likely depend on the structures they form, are still poorly understood. To gain new insight into the structural and functional properties of triplet repeats in RNA, we have performed a biochemical structural analysis of the complete set of triplet repeat transcripts, each composed of a single sequence repeated 17 times. We show that these transcripts fall into four structural classes. The repeated CAA, UUG, AAG, CUU, CCU, CCA, and UAA motifs did not form any higher order structure under any analyzed conditions. The CAU, CUA, UUA, AUG, and UAG repeats are ordered according to their increasing tendency to form semistable hairpins. The repeated CGA, CGU, and all CNG motifs form fairly stable hairpins, whereas AGG and UGG repeats fold into stable G-quadruplexes. The triplet repeats that formed the most stable structures were characterized further by biophysical methods. UV-monitored structure melting revealed that CGG and CCG repeats form, respectively, the most and least stable hairpins of all CNG repeats. Circular dichroism spectra showed that the AGG and UGG repeat quadruplexes are formed by parallel RNA strands. Furthermore, we demonstrated that the different susceptibility of various triplet repeat transcripts to serum nucleases can be explained by the sequence and structural features of the tested RNAs. The results of this study provide a comprehensive structural foundation for the functional analysis of triplet repeats in transcripts.


Nucleic Acids Research | 2014

MBNL proteins and their target RNAs, interaction and splicing regulation

Patryk Konieczny; Ewa Stepniak-Konieczna; Krzysztof Sobczak

Muscleblind-like (MBNL) proteins are key regulators of precursor and mature mRNA metabolism in mammals. Based on published and novel data, we explore models of tissue-specific MBNL interaction with RNA. We portray MBNL domains critical for RNA binding and splicing regulation, and the structure of MBNLs normal and pathogenic RNA targets, particularly in the context of myotonic dystrophy (DM), in which expanded CUG or CCUG repeat transcripts sequester several nuclear proteins including MBNLs. We also review the properties of MBNL/RNA complex, including recent data obtained from UV cross-linking and immunoprecipitation (CLIP-Seq), and discuss how this interaction shapes normal MBNL-dependent alternative splicing regulation. Finally, we review how this acquired knowledge about the pathogenic RNA structure and nature of MBNL sequestration can be translated into the design of therapeutic strategies against DM.

Collaboration


Dive into the Krzysztof Sobczak's collaboration.

Top Co-Authors

Avatar

Charles A. Thornton

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katarzyna Taylor

Adam Mickiewicz University in Poznań

View shared research outputs
Top Co-Authors

Avatar

Ewa Stepniak-Konieczna

Adam Mickiewicz University in Poznań

View shared research outputs
Top Co-Authors

Avatar

Patryk Konieczny

Adam Mickiewicz University in Poznań

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Agnieszka Wojtkowiak-Szlachcic

Adam Mickiewicz University in Poznań

View shared research outputs
Top Co-Authors

Avatar

Piotr Cywoniuk

Adam Mickiewicz University in Poznań

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge