Kuan-Hung Lu
National Taiwan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kuan-Hung Lu.
Journal of Agricultural and Food Chemistry | 2014
Yi-Syuan Lai; Wei-Cheng Chen; Chi-Tang Ho; Kuan-Hung Lu; Shih-Hang Lin; Hui-Chun Tseng; Shuw-Yuan Lin; Lee-Yan Sheen
This study investigated the protective properties of garlic essential oil (GEO) and its major organosulfur component (diallyl disulfide, DADS) against the development of nonalcoholic fatty liver disease (NAFLD). C57BL/6J mice were fed a normal or high-fat diet (HFD) with/without GEO (25, 50, and 100 mg/kg) or DADS (10 and 20 mg/kg) for 12 weeks. GEO and DADS dose-dependently exerted antiobesity and antihyperlipidemic effects by reducing HFD-induced body weight gain, adipose tissue weight, and serum biochemical parameters. Administration of 50 and 100 mg/kg GEO and 20 mg/kg DADS significantly decreased the release of pro-inflammatory cytokines in liver, accompanied by elevated antioxidant capacity via inhibition of cytochrome P450 2E1 expression during NAFLD development. The anti-NAFLD effects of GEO and DADS were mediated through down-regulation of sterol regulatory element binding protein-1c, acetyl-CoA carboxylase, fatty acid synthase, and 3-hydroxy-3-methylglutaryl-coenzyme A reductase, as well as stimulation of peroxisome proliferator-activated receptor α and carnitine palmitoyltransferase-1. These results demonstrate that GEO and DADS dose-dependently protected obese mice with long-term HFD-induced NAFLD from lipid accumulation, inflammation, and oxidative damage by ameliorating lipid metabolic disorders and oxidative stress. The dose of 20 mg/kg DADS was equally as effective in preventing NAFLD as 50 mg/kg GEO containing the same amount of DADS, which demonstrates that DADS may be the main bioactive component in GEO.
Journal of Agricultural and Food Chemistry | 2015
Yi-Syuan Lai; Wei-Cheng Chen; Tien-Chueh Kuo; Chi-Tang Ho; Ching-Hua Kuo; Yufeng J. Tseng; Kuan-Hung Lu; Shih-Hang Lin; Suraphan Panyod; Lee-Yan Sheen
Obesity, dyslipidemia, insulin resistance, oxidative stress, and inflammation are key clinical risk factors for the progression of non-alcoholic fatty liver disease (NAFLD). Currently, there is no comprehensive metabolic profile of a well-established animal model that effectively mimics the etiology and pathogenesis of NAFLD in humans. Here, we report the pathophysiological and metabolomic changes associated with NAFLD development in a C57BL/6J mouse model in which NAFLD was induced by feeding a high-fat diet (HFD) for 4, 8, 12, and 16 weeks. Serum metabolomic analysis was conducted using ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) and gas chromatography-mass spectrometry (GC-MS) to establish a metabolomic profile. Analysis of the metabolomic profile in combination with principal component analysis revealed marked differences in metabolites between the control and HFD group depending upon NAFLD severity. A total of 30 potential biomarkers were strongly associated with the development of NAFLD. Among these, 11 metabolites were mainly related to carbohydrate metabolism, hepatic biotransformation, collagen synthesis, and gut microbial metabolism, which are characteristics of obesity, as well as significantly increased serum glucose, total cholesterol, and hepatic triglyceride levels during the onset of NAFLD (4 weeks). At 8 weeks, 5 additional metabolites that are chiefly involved in perturbation of lipid metabolism and insulin secretion were found to be associated with hyperinsulinemia, hyperlipidemia, and hepatic steatosis in the mid-term of NAFLD progression. At the end of 12 and 16 weeks, 14 additional metabolites were predominantly correlated to abnormal bile acid synthesis, oxidative stress, and inflammation, representing hepatic inflammatory infiltration during NAFLD development. These results provide potential biomarkers for early risk assessment of NAFLD and further insights into NAFLD development.
Journal of Agricultural and Food Chemistry | 2016
Yi-Syuan Lai; Wan-Ching Lee; Yu-En Lin; Chi-Tang Ho; Kuan-Hung Lu; Shih-Hang Lin; Suraphan Panyod; Yung-Lin Chu; Lee-Yan Sheen
The objective of this study was to investigate the hepatoprotective efficacy and mechanism of action of ginger essential oil (GEO) against the development of nonalcoholic fatty liver disease (NAFLD). Mice were maintained on either a control diet or high-fat diet (HFD) supplemented with GEO (12.5, 62.5, and 125 mg/kg) or citral (2.5 and 25 mg/kg) for 12 weeks. We demonstrated that GEO and its major component (citral) lowered HFD-induced obesity in a dose-dependent manner, accompanied by anti-hyperlipidemic effects by reducing serum free fatty acid, triglyceride, and total cholesterol levels. Moreover, liver histological results showed that administration of 62.5 and 125 mg/kg GEO and 25 mg/kg citral significantly reduced hepatic lipid accumulation. Further assessment by Western blotting and investigation of the lipid metabolism revealed that hepatic protein expression of sterol regulatory element-binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), and cytochrome P450 2E1 (CYP2E1) were down-regulated by GEO and citral, indicating that GEO and citral suppressed HFD-stimulated lipid biosynthesis and oxidative stress. Furthermore, GEO and citral effectively enhanced the antioxidant capacities and reduced inflammatory response in mouse liver, which exerted protective effects against steatohepatitis. Collectively, GEO and citral exhibited potent hepatoprotective effects against NAFLD induced by HFD in obese mice. Thus, GEO might be an effective dietary supplement to ameliorate NAFLD-related metabolic diseases, and citral could play a vital role in its management.
Journal of Ethnopharmacology | 2016
Wei-Cheng Chen; Yi-Syuan Lai; Shih-Hang Lin; Kuan-Hung Lu; Yu-En Lin; Suraphan Panyod; Chi-Tang Ho; Lee-Yan Sheen
ETHNOPHARMACOLOGY RELEVANCE Gastrodia elata Blume is a highly valuable traditional Chinese medicine used in the treatment of depression. However, compounds with antidepressant effects in water extracts of G. elata Bl. (WGE) have not been identified. The aims of this study were to determine the major antidepressant compound in WGE and to evaluate the antidepressant effects of WGE and its active compounds which involved the monoaminergic system and neuronal cytoskeletal remodeling. MATERIALS AND METHODS Gastrodin (GAS) and 4-hydroxybenzyl alcohol (HBA) in WGE, were analyzed with high-performance liquid chromatography (HPLC)-ultraviolet detection. The forced swimming test (FST) was used to induce depression-like symptoms in 9 weeks old male Sprague-Dawley rats. The open field test (OFT) was used to measure anxiety after WGE, GAS, and HBA treatments. The levels of monoamine such as serotonin (5-HT), dopamine (DA), and their metabolites 5-hydroxyindoleacetic acid (5-HIAA), 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) were measured using HPLC-electrochemical detection. Western blotting was used to examine the 5-HT1A receptor and the neuronal cytoskeleton remodeling-related proteins, Slit, dihydropyrimidinase-related protein 2 (DPYSL2, also called CRMP2), Ras homologous member A (RhoA), and profilin 1 (PFN1) in vivo. Slit1 expression was evaluated in Hs683 cell line after treated with WGE (0.5mg/mL), GAS (50, 100 and 100μM), and HBA (50, 100 and 100μM). RESULTS Oral administration of WGE (500mg/kg bw), GAS (100mg/kg bw), and HBA (100mg/kg bw) exhibited the anti-depressant effect by significantly reducing the immobility time in FST, monoamine metabolism including the 5-HT to 5-HIAA in the hippocampus and DA to DOPAC and HVA ratios in the frontal cortex, amygdala, and hippocampus. In the hippocampus, the expression of the neuronal cytoskeleton remodeling-related negative regulators Slit1 and RhoA were significantly down-regulated. In addition, the positive regulators CRMP2 and PFN1 were significantly up-regulated following GAS, HBA, and WGE treatments. Moreover, WGE, GAS, and HBA were directly down-regulated Slit1 expression in Hs683 cells. CONCLUSION WGE, GAS, and HBA exhibited potential anti-depressant effects in rats by decreasing monoamine metabolism and modulated cytoskeleton remodeling-related protein expression in the Slit-Robo pathway. These results suggest that WGE can be used as agent for depressive prevention.
Journal of Traditional and Complementary Medicine | 2012
Yen-Wenn Liu; Kuan-Hung Lu; Chi-Tang Ho; Lee-Yan Sheen
Chinese herbal medicine (中草藥) attracts much attention in the treatment of liver injuries. Numerous studies have revealed various biological activities of medicinal mushrooms such as Antrodia Cinnamomea (牛樟芝). Although A. cinnamomea is rare in the wild, recent developments in fermentation and cultivation technologies make the mycelia and fruiting bodies of this valuable medicinal mushroom readily available. Liver diseases such as fatty liver, hepatitis, hepatic fibrosis, and liver cancer are complicated processes of liver injuries that have tremendous impact on human society. In this article, we reviewed studies about the hepatoprotective effects of the fruiting bodies and mycelia of A. cinnamomea performed in different experimental models. The results of those studies suggest the potential application of A. cinnamomea in preventing and treating liver diseases and its potential to be developed into health foods or new drugs.
Journal of Traditional and Complementary Medicine | 2012
Kuan-Hung Lu; Chun-Ting Liu; Rajasekaran Raghu; Lee-Yan Sheen
Alcoholic liver disease (ALD) is a complex chronic disease and is associated with a spectrum of liver injury ranging from steatosis and steatohepatitis to fibrosis and cirrhosis. Since effective therapies for ALD are still limited, Chinese herbal medicine is thought to be an important and alternative approach. This review focuses on the current scientific evidence of ALD by ten Chinese Materia Medica (中藥 zhōng yào), including Salviae Miltiorrhizae Radix (丹參 dān shēn), Notoginseng Radix (三七 sān qī), Lycii Fructus (枸杞子 gǒu qǐ zǐ), Cnidii Fructus (蛇床子 shé chuáng zǐ), Gentianae Radix (龍膽 lóng dǎn), Puerariae Radix (葛根 gé gēn), Puerariae Flos (葛花 gé huā), Magnoliae Officinalis Cortex (厚朴 hòu pò), Platycodonis Radix (桔梗 jié gěng), and Trigonellae Semen (胡蘆巴 hú lú bā). Potential mechanisms of these herbal medicines in ALD are involved in amelioration of enhanced inflammation, reduction of hepatic oxidative stress and lipogenesis, and enhancement of intestinal permeability in alcohol-induced liver injury models in vitro and in vivo. Accordingly, the evidenced therapeutic potential suggests that these herbs are promising candidates for prevention and development of new drugs for ALD in the future.
Journal of Traditional and Complementary Medicine | 2012
Rajasekaran Raghu; Kuan-Hung Lu; Lee-Yan Sheen
Garlic (大蒜 dà suàn; the bulb of Allium sativum), bestowed with an array of organosulfur compounds finds its application in treating many ailments including cardiovascular problems, common cold, bacterial and fungal infections and cancer. Numerous epidemiological evidences document the beneficial effects of various bioactive organosulfur compounds of garlic against different types of cancer. Studies involving the animal and cell models indicate garlic bioactive compounds could be effective in treating all the stages of cancer. This review gives an update on the recent pre-clinical and clinical trials, carried out to evaluate the efficacy of various garlic bioactive compounds along with the mechanism of action pertaining to major digestive cancers including liver, gastric and colorectal cancers. The major anti-carcinogenic mechanisms are caspase dependent and/or independent induction of apoptosis, anti-proliferative, anti-metastasis, anti-oxidant and immunomodulative properties. Form the clinical trials an increase in the garlic consumption of 20 g/day reduced the risk of gastric and colorectal cancer. In summary, increased uptake of garlic in diet may prevent the incidence of digestive cancers.
Journal of Agricultural and Food Chemistry | 2014
Shih-Hang Lin; Wei-Cheng Chen; Kuan-Hung Lu; Pei-Ju Chen; Shu-Chen Hsieh; Tzu-Ming Pan; Shui-Tein Chen; Lee-Yan Sheen
Nowadays, depression is a serious psychological disorder that causes extreme economic loss and social problems. Previously, we discovered that the water extract of Gastrodia elata Blume (WGE) improved depressive-like behavior by influencing neurotransmitters in rats subjected to the forced swimming test. To elucidate possible mechanisms, in the present study, we performed a proteomics and bioinformatics analysis to identify the related pathways. Western blot-validated results indicated that the core protein network modulated by WGE administration was closely associated with down-regulation of the Slit-Robo pathway, which modulates neuronal cytoskeletal remodeling processes. Although Slit-Robo signaling has been well investigated in neuronal development, its relationship with depression is not fully understood. We provide a potential hint on the mechanism responsible for the antidepressive-like activity of WGE. In conclusion, we suggest that the Slit-Robo pathway and neuronal cytoskeleton remodeling are possibly one of the pathways associated with the antidepressive-like effects of WGE.
Journal of Ethnopharmacology | 2015
Shih-Hang Lin; Mei-Ling Chou; Wei-Cheng Chen; Yi-Syuan Lai; Kuan-Hung Lu; Cherng-Wei Hao; Lee-Yan Sheen
ETHNOPHARMACOLOGICAL RELEVANCE Depression is a serious psychological disorder that causes extreme economic loss and social problems. However, the conventional medications typically cause side effects that result in patients opting to out of therapy. Lemon balm (Melissa officinalis L., MO) is an old and particularly reliable medicinal herb for relieving feelings of melancholy, depression and anxiety. The present study aims to investigate the antidepressant-like activity of water extract of MO (WMO) by evaluating its influence on the behaviors and the relevant neurotransmitters of rats performed to forced swimming test. MATERIALS AND METHODS Two phases of the experiment were conducted. In the acute model, rats were administered ultrapure water (control), fluoxetine, WMO, or the indicated active compound (rosmarinic acid, RA) three times in one day. In the sub-acute model, rats were respectively administered ultrapure water (control), fluoxetine, or three dosages of WMO once a day for 10 days. Locomotor activity and depression-like behavior were examined using the open field test and the forced swimming test, respectively. The levels of relevant neurotransmitters and their metabolites in the frontal cortex, amygdala, hippocampus, and striatum were analyzed by high performance liquid chromatography. RESULTS In the acute model, WMO and RA significantly reduced depressive-like behavior but the type of related neurotransmitter could not be determined. The results indicated that the effect of WMO administration on the reduction of immobility time was associated with an increase in swimming time of the rats, indicative of serotonergic neurotransmission modulation. Chromatography data validated that the activity of WMO was associated with a reduction in the serotonin turnover rate. CONCLUSION The present study shows the serotonergic antidepressant-like activity of WMO. Hence, WMO may offer a serotonergic antidepressant activity to prevent depression and to assist in conventional therapies.
Journal of Food and Drug Analysis | 2015
Wei-Cheng Chen; Yi-Syuan Lai; Kuan-Hung Lu; Shih-Hang Lin; Li-Yun Liao; Chi-Tang Ho; Lee-Yan Sheen
Gastrodia elata Blume is commonly used as a medical herb in China for ameliorating headaches, dizziness, and convulsions. In previous studies, water extracts of G. elata Bl. (WGE) have demonstrated potential to act as therapeutic agents to improve depression-like symptoms in rats. As gastrodin (GAS) is a major active compound in WGE, its quantitation in WGE is important for quality control. The objective of this study was to develop an optimized and validated reversed-phase high-performance liquid chromatography method for the analysis of GAS in different sources of WGE. We evaluated the GAS content in varieties of G. elata Bl. including G. elata Bl. f. glauca S. Chow and G. elata Bl. f. elata. We also evaluated the GAS content of the latter variety from two different origins, Yun-nan and Hu-nan. The results indicate that the amount of GAS analyzed in WGE from G. elata Bl. f. glauca S. Chow is five times higher than that of G. elata Bl. f. elata from Yun-nan and Hu-nan. A significant difference in GAS content was observed between varieties of G. elata Bl., although not between locations of origin.