Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kui Liu is active.

Publication


Featured researches published by Kui Liu.


Human Molecular Genetics | 2014

Two classes of ovarian primordial follicles exhibit distinct developmental dynamics and physiological functions

Wenjing Zheng; Hua Zhang; Nagaraju Gorre; Sanjiv Risal; Yan Shen; Kui Liu

In the mammalian ovary, progressive activation of primordial follicles serves as the source of fertilizable ova, and disorders in the development of primordial follicles lead to various ovarian diseases. However, very little is known about the developmental dynamics of primordial follicles under physiological conditions, and the fates of distinct populations of primordial follicles also remain unclear. In this study, by generating the Foxl2-CreERT2 and Sohlh1-CreERT2 inducible mouse models, we have specifically labeled and traced the in vivo development of two classes of primordial follicles, the first wave of simultaneously activated follicles after birth and the primordial follicles that are gradually activated in adulthood. Our results show that the first wave of follicles exists in the ovaries for ∼3 months and contributes to the onset of puberty and to early fertility. The primordial follicles at the ovarian cortex gradually replace the first wave of follicles and dominate the ovary after 3 months of age, providing fertility until the end of reproductive life. Moreover, by tracing the time periods needed for primordial follicles to reach various advanced stages in vivo, we were able to determine the exact developmental dynamics of the two classes of primordial follicles. We have now revealed the lifelong developmental dynamics of ovarian primordial follicles under physiological conditions and have clearly shown that two classes of primordial follicles follow distinct, age-dependent developmental paths and play different roles in the mammalian reproductive lifespan.


Human Molecular Genetics | 2012

Cdk1, but not Cdk2, is the sole Cdk that is essential and sufficient to drive resumption of meiosis in mouse oocytes

Deepak Adhikari; Wenjing Zheng; Yan Shen; Nagaraju Gorre; Yao Ning; Guillaume Halet; Philipp Kaldis; Kui Liu

Mammalian oocytes are arrested at the prophase of meiosis I during fetal or postnatal development, and the meiosis is resumed by the preovulatory surge of luteinizing hormone. The in vivo functional roles of cyclin-dependent kinases (Cdks) during the resumption of meiosis in mammalian oocytes are largely unknown. Previous studies have shown that deletions of Cdk3, Cdk4 or Cdk6 in mice result in viable animals with normal oocyte maturation, indicating that these Cdks are not essential for the meiotic maturation of oocytes. In addition, conventional knockout of Cdk1 and Cdk2 leads to embryonic lethality and postnatal follicular depletion, respectively, making it impossible to study the functions of Cdk1 and Cdk2 in oocyte meiosis. In this study, we generated conditional knockout mice with oocyte-specific deletions of Cdk1 and Cdk2. We showed that the lack of Cdk1, but not of Cdk2, leads to female infertility due to a failure of the resumption of meiosis in the oocyte. Re-introduction of Cdk1 mRNA into Cdk1-null oocytes largely resumed meiosis. Thus, Cdk1 is the sole Cdk that is essential and sufficient to drive resumption of meiosis in mouse oocytes. We also found that Cdk1 maintains the phosphorylation status of protein phosphatase 1 and lamin A/C in oocytes in order for meiosis resumption to occur.


Current Biology | 2014

Somatic cells initiate primordial follicle activation and govern the development of dormant oocytes in mice.

Hua Zhang; Sanjiv Risal; Nagaraju Gorre; Kiran Busayavalasa; Xin Li; Yan Shen; Benedikt Bosbach; Mats Brännström; Kui Liu

BACKGROUNDnThe majority of oocytes in the mammalian ovary are dormant oocytes that are enclosed in primordial follicles by several somatic cells, which we refer to as primordial follicle granulosa cells (pfGCs). Very little is known, however, about how the pfGCs control the activation of primordial follicles and the developmental fates of dormant oocytes.nnnRESULTSnBy targeting molecules in pfGCs with several mutant mouse models, we demonstrate that the somatic pfGCs initiate the activation of primordial follicles and govern the quiescence or awakening of dormant oocytes. Inhibition of mTORC1 signaling in pfGCs prevents the differentiation of pfGCs into granulosa cells, and this arrests the dormant oocytes in their quiescent states, leading to oocyte death. Overactivation of mTORC1 signaling in pfGCs accelerates the differentiation of pfGCs into granulosa cells and causes premature activation of all dormant oocytes and primordial follicles. We further show that pfGCs trigger the awakening of dormant oocytes through KIT ligand (KITL), and we present an essential communication network between the somatic cells and germ cells that is based on signaling between the mTORC1-KITL cascade in pfGCs and KIT-PI3K signaling in oocytes.nnnCONCLUSIONSnOur findings provide a relatively complete picture of how mammalian primordial follicles are activated. The microenvironment surrounding primordial follicles can activate mTORC1-KITL signaling in pfGCs, and these cells trigger the awakening of dormant oocytes and complete the process of follicular activation. Such communication between the microenvironment, somatic cells, and germ cells is essential to maintaining the proper reproductive lifespan in mammals.


PLOS ONE | 2012

The Safe Use of a PTEN Inhibitor for the Activation of Dormant Mouse Primordial Follicles and Generation of Fertilizable Eggs

Deepak Adhikari; Nagaraju Gorre; Sanjiv Risal; Zhiyi Zhao; Hua Zhang; Yan Shen; Kui Liu

Background Primordial ovarian follicles, which are often present in the ovaries of premature ovarian failure (POF) patients or are cryopreserved from the ovaries of young cancer patients who are undergoing gonadotoxic anticancer therapies, cannot be used to generate mature oocytes for in vitro fertilization (IVF). There has been very little success in triggering growth of primordial follicles to obtain fertilizable oocytes due to the poor understanding of the biology of primordial follicle activation. Methodology/Principal Findings We have recently reported that PTEN (phosphatase and tensin homolog deleted on chromosome ten) prevents primordial follicle activation in mice, and deletion of Pten from the oocytes of primordial follicles leads to follicular activation. Consequently, the PTEN inhibitor has been successfully used in vitro to activate primordial follicles in both mouse and human ovaries. These results suggest that PTEN inhibitors could be used in ovarian culture medium to trigger the activation of primordial follicle. To study the safety and efficacy of the use of such inhibitors, we activated primordial follicles from neonatal mouse ovaries by transient treatment with a PTEN inhibitor bpV(HOpic). These ovaries were then transplanted under the kidney capsules of recipient mice to generate mature oocytes. The mature oocytes were fertilized in vitro and progeny mice were obtained after embryo transfer. Results and Conclusions Long-term monitoring up to the second generation of progeny mice showed that the mice were reproductively active and were free from any overt signs or symptoms of chronic illnesses. Our results indicate that the use of PTEN inhibitors could be a safe and effective way of generating mature human oocytes for use in novel IVF techniques.


Molecular and Cellular Endocrinology | 2014

The regulation of maturation promoting factor during prophase I arrest and meiotic entry in mammalian oocytes

Deepak Adhikari; Kui Liu

Mammalian oocytes arrest at prophase of meiosis I at around birth and they remain arrested at this stage until puberty when the preovulatory surge of luteinizing hormone (LH) causes ovulation. Prophase I arrest in the immature oocyte results from the maintenance of low activity of maturation promoting factor (MPF), which consists of a catalytic subunit (CDK1) and regulatory subunit (cyclin B1). Phosphorylation-mediated inactivation of CDK1 and constant degradation of cyclin B1 keep MPF activity low during prophase I arrest. LH-mediated signaling manipulates a vast array of molecules to activate CDK1. Active CDK1 not only phosphorylates different meiotic phosphoproteins during the resumption of meiosis but also inhibits their rapid dephosphorylation by inhibiting the activities of CDK1 antagonizing protein phosphatases (PPs). In this way, CDK1 both phosphorylates its substrates and protects them from being dephosphorylated. Accumulating evidence suggests that the net MPF activity that drives the resumption of meiosis in oocytes depends on the activation status of CDK1 antagonizing PPs. This review aims to provide a summary of the current understanding of the signaling pathways involved in regulating MPF activity during prophase I arrest and reentry into meiosis of mammalian oocytes.


Nature Medicine | 2015

Adult human and mouse ovaries lack DDX4-expressing functional oogonial stem cells.

Hua Zhang; Sarita Panula; Sophie Petropoulos; Daniel Edsgärd; Kiran Busayavalasa; Lian Liu; Xin Li; Sanjiv Risal; Yan Shen; Jingchen Shao; Meng Liu; Susann Li; Dongdong Zhang; Xiaoxi Zhang; Romana R. Gerner; Mona Sheikhi; Pauliina Damdimopoulou; Rickard Sandberg; Iyadh Douagi; Jan Åke Gustafsson; Lin Liu; Fredrik Lanner; Outi Hovatta; Kui Liu

The generally accepted viewpoint for more than 50 years has been that the number of oocytes is fixed in fetal or neonatal ovaries, and therefore, oocytes cannot renew themselves in postnatal or adult life. Over the past decade, however, the traditional viewpoint has been challenged by a number of investigators who have presented evidence that postnatal follicular renewal occurs in mammals, and that mitotically active oogonial stem cells (OSCs) exist in postnatal mouse ovaries. Health, Inc. All rights reserved. 30 Obstetrical and Gynecological Survey This letter to the editor presents experimental evidence that disputes the existence of mitotically active OSC in postnatal mouse ovaries. The results presented here are the summary of research conducted independently in 4 laboratories. A previous study (White et al.Nat Med. 2012;18:413–421) reported that OSCs could be purified from adult human and mouse ovaries by use of DEAD box polypeptide 4 (DDX4) antibody–based fluorescence-activated cell sorting (FACS), and that after in vitro manipulation, these isolated OSCs could form oocytes. Based on the well-established cytoplasmic location of DDX4, the use of this protein as a cell surface marker is controversial. Using the same DDX4 antibody–based FACS approach as in the White et al study, the investigators isolated a population of cells from human ovarian cortical tissue biopsied from 16 fertile reproductive-age women who had had at least 1 previous live birth. No DDX4 messenger RNA (mRNA) expression was detected using quantitative polymerase chain reaction in these cells or by a more sensitive single-cell mRNA sequencing analysis that could detect low expression of DDX4. In additional experiments, the sorted human ovarian cells were cultured as described in the previous study. Although no DDX4 expression was detected in the cultured DDX4-positive cells (cultured-POS) or cultured DDX4-negative cells (cultured-NEG) by immunofluorescence staining, the cultured-POS cells and cultured-NEG cells both bound tightly to the DDX4-specific antibody in FACS and became DDX4-positive after culture. The previous study had reported that oocytes enclosed in follicles regenerated 1 week after the DDX4-positive human OSCs were injected into human ovarian cortical tissues that were subsequently xenografted into female severe combined immunodeficient mice. The investigators repeated this experiment and labeled the cultured-POS cells with stable enhanced green fluorescent protein (EGFP) expression. After culturing and expanding this cell population, EGFP-expressing cultured-POS cells were injected into human ovarian cortical tissue biopsies, and these cortical tissues were then xenografted into female severe combined immunodeficient mice for further growth. Grafts were analyzed 1 week, 2 weeks, and 4 weeks after transplantation of the EGFP–cultured-POS cells into the human cortical tissues. The results of this experiment showed that EGFP-positive cells could be observed in the vicinity of the injection sites, but the absence of any EGFP-positive oocytes demonstrated that the DDX4-positive human cells obtained with the DDX4 antibody are not functional stem cells and cannot regenerate oocytes. To confirm these findings that the DDX4-specific antibody–based FACS does not select for a specific cell population expressing DDX4, the same FACS was performed with mouse cells from several organs (including adult liver, spleen, and kidney) that do not express DDX4. DDX4-positive cell populations were obtained from cells of these organs, which provide additional evidence that use of the DDX4-specific antibody using the FACS protocol (critical in purifying the reported OSCs) does not select for DDX4-expressing cells. These findings provide evidence that supports the traditional view that no postnatal follicular renewal occurs in mammals, and no mitotically active DDX4-expressing female germline progenitors exist in postnatal mouse ovaries.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Life-long in vivo cell-lineage tracing shows that no oogenesis originates from putative germline stem cells in adult mice

Hua Zhang; Lian Liu; Xin Li; Kiran Busayavalasa; Yan Shen; Outi Hovatta; Jan Åke Gustafsson; Kui Liu

Significance Whether or not oocyte regeneration occurs in the adult mammalian ovary has been the subject of much debate. By performing a series of in vivo cell-lineage tracing experiments, we have supplied compelling in vivo evidence that mammalian oocytes are not regenerated from any putative germline stem cells in adult life. Our current study provides conclusive evidence that the initial oocyte pool is the only source of fertility throughout reproductive life in mammals. Whether or not oocyte regeneration occurs in adult life has been the subject of much debate. In this study, we have traced germ-cell lineages over the life spans of three genetically modified mouse models and provide direct evidence that oogenesis does not originate from any germline stem cells (GSCs) in adult mice. By selective ablation of all existing oocytes in a Gdf9-Cre;iDTR mouse model, we have demonstrated that no new germ cells were ever regenerated under pathological conditions. By in vivo tracing of oocytes and follicles in the Sohlh1-CreERT2;R26R and Foxl2-CreERT2;mT/mG mouse models, respectively, we have shown that the initial pool of oocytes is the only source of germ cells throughout the life span of the mice and that no adult oogenesis ever occurs under physiological conditions. Our findings clearly show that there are no GSCs that contribute to adult oogenesis in mice and that the initial pool of oocytes formed in early life is the only source of germ cells throughout the entire reproductive life span.


PLOS ONE | 2013

Pharmacological Inhibition of mTORC1 Prevents Over-Activation of the Primordial Follicle Pool in Response to Elevated PI3K Signaling

Deepak Adhikari; Sanjiv Risal; Kui Liu; Yan Shen

The majority of ovarian primordial follicles must be preserved in a quiescent state to allow for the regular production of gametes over the female reproductive lifespan. However, the molecular mechanism that maintains the long quiescence of primordial follicles is poorly understood. Under certain pathological conditions, the entire pool of primordial follicles matures simultaneously leading to an accelerated loss of primordial follicles and to premature ovarian failure (POF). We have previously shown that loss of Pten (phosphatase and tensin homolog deleted on chromosome ten) in mouse oocytes leads to premature activation of the entire pool of primordial follicles, subsequent follicular depletion in early adulthood, and the onset of POF. Lack of PTEN leads to increased phosphatidylinositol 3-kinase (PI3K)–Akt and mammalian target of rapamycin complex 1 (mTORC1) signaling in the oocytes. To study the functional and pathological roles of elevated mTORC1 signaling in the oocytes, we treated the Pten-mutant mice with the specific mTORC1 inhibitor rapamycin. When administered to Pten-deficient mice prior to the activation of the primordial follicles, rapamycin effectively prevented global follicular activation and preserved the ovarian reserve. These results provide a rationale for exploring the possible use of rapamycin as a drug for the preservation of the primordial follicle pool, and the possible prevention of POF.


Molecular Human Reproduction | 2014

The two classes of primordial follicles in the mouse ovary: their development, physiological functions and implications for future research

Wenjing Zheng; Hua Zhang; Kui Liu

Ovarian follicles are the basic functional units in the mammalian ovary. This review summarizes early pioneering studies and focuses on recent progress that has shown that there are two distinct classes of primordial follicles in the ovary: the first wave of primordial follicles that are activated immediately after they are formed and the adult primordial follicles that are activated gradually in later life. These two separate classes have been proposed for two decades, but sufficient experimental evidence to support this hypothesis has only been obtained recently using newly developed follicular tracing techniques in genetically modified mouse models. These two follicle populations differ from each other primarily in terms of their developmental dynamics and their contributions to ovarian physiology. It is apparent now that these two follicle populations should be treated separately, and such knowledge will hopefully lead to a more in-depth understanding of how distinct types of primordial follicles contribute to physiologic and pathologic alterations of the mammalian ovary.


PLOS ONE | 2014

mTORC1 Signaling in Oocytes Is Dispensable for the Survival of Primordial Follicles and for Female Fertility

Nagaraju Gorre; Deepak Adhikari; Rebecca Lindkvist; Mats Brännström; Kui Liu; Yan Shen

The molecular mechanisms underlying reproductive aging and menopausal age in female mammals are poorly understood. Mechanistic target of rapamycin complex 1 (mTORC1) is a central controller of cell growth and proliferation. To determine whether mTORC1 signaling in oocytes plays a direct role in physiological follicular development and fertility in female mice, we conditionally deleted the specific and essential mTORC1 component Rptor (regulatory-associated protein of mTORC1) from the oocytes of primordial follicles by using transgenic mice expressing growth differentiation factor 9 (Gdf-9) promoter-mediated Cre recombinase. We provide in vivo evidence that deletion of Rptor in the oocytes of both primordial and further-developed follicles leads to the loss of mTORC1 signaling in oocytes as indicated by loss of phosphorylation of S6K1 and 4e-bp1 at T389 and S65, respectively. However, the follicular development and fertility of mice lacking Rptor in oocytes were not affected. Mechanistically, the loss of mTORC1 signaling in Rptor-deleted mouse oocytes led to the elevation of phosphatidylinositol 3-kinase (PI3K) signaling that maintained normal follicular development and fertility. Therefore, this study shows that loss of mTORC1 signaling in oocytes triggers a compensatory activation of the PI3K signaling cascade that maintains normal ovarian follicular development and fertility.

Collaboration


Dive into the Kui Liu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sanjiv Risal

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Yan Shen

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hua Zhang

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Philipp Kaldis

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Jingchen Shao

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Nagaraju Gorre

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Xin Li

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge