Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kui Qian is active.

Publication


Featured researches published by Kui Qian.


Nature Communications | 2014

The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera

Virpi Ahola; Rainer Lehtonen; Panu Somervuo; Leena Salmela; Patrik Koskinen; Pasi Rastas; Niko Välimäki; Lars Paulin; Jouni Kvist; Niklas Wahlberg; Jaakko Tanskanen; Emily A. Hornett; Laura Ferguson; Shiqi Luo; Zijuan Cao; Maaike de Jong; Anne Duplouy; Olli-Pekka Smolander; Heiko Vogel; Rajiv C. McCoy; Kui Qian; Wong Swee Chong; Qin Zhang; Freed Ahmad; Jani K. Haukka; Aruj Joshi; Jarkko Salojärvi; Christopher W. Wheat; Ewald Grosse-Wilde; Daniel C. Hughes

Previous studies have reported that chromosome synteny in Lepidoptera has been well conserved, yet the number of haploid chromosomes varies widely from 5 to 223. Here we report the genome (393 Mb) of the Glanville fritillary butterfly (Melitaea cinxia; Nymphalidae), a widely recognized model species in metapopulation biology and eco-evolutionary research, which has the putative ancestral karyotype of n=31. Using a phylogenetic analyses of Nymphalidae and of other Lepidoptera, combined with orthologue-level comparisons of chromosomes, we conclude that the ancestral lepidopteran karyotype has been n=31 for at least 140 My. We show that fusion chromosomes have retained the ancestral chromosome segments and very few rearrangements have occurred across the fusion sites. The same, shortest ancestral chromosomes have independently participated in fusion events in species with smaller karyotypes. The short chromosomes have higher rearrangement rate than long ones. These characteristics highlight distinctive features of the evolutionary dynamics of butterflies and moths.


PLOS ONE | 2011

Human papillomavirus 16 E5 modulates the expression of host microRNAs.

Dario Greco; Niina Kivi; Kui Qian; Suvi-Katri Leivonen; Petri Auvinen; Eeva Auvinen

Human papillomavirus (HPV) infection is a prerequisite of developing cervical cancer, approximately half of which are associated with HPV type 16. HPV 16 encodes three oncogenes, E5, E6, and E7, of which E5 is the least studied so far. Its roles in regulating replication and pathogenesis of HPV are not fully understood. Here we utilize high-throughput screening to coordinately investigate the effect of E5 on the expression of host protein-coding and microRNA genes. MicroRNAs form a class of 22nt long noncoding RNAs with regulatory activity. Among the altered cellular microRNAs we focus on the alteration in the expression of miR-146a, miR-203 and miR-324-5p and their target genes in a time interval of 96 hours of E5 induction. Our results indicate that HPV infection and subsequent transformation take place through complex regulatory patterns of gene expression in the host cells, part of which are regulated by the E5 protein.


Journal of Immunology | 2012

Leptin-Induced mTOR Activation Defines a Specific Molecular and Transcriptional Signature Controlling CD4+ Effector T Cell Responses

Claudio Procaccini; Veronica De Rosa; Mario Galgani; Fortunata Carbone; Silvana Cassano; Dario Greco; Kui Qian; Petri Auvinen; Gaetano Calì; Giovanni Stallone; Luigi Formisano; Antonio La Cava; Giuseppe Matarese

The sensing by T cells of metabolic and energetic changes in the microenvironment can determine the differentiation, maturation, and activation of these cells. Although it is known that mammalian target of rapamycin (mTOR) gauges nutritonal and energetic signals in the extracellular milieu, it is not known how mTOR and metabolism influence CD4+CD25−FOXP3− effector T cell (Teff) responses. In this article, we show that leptin-induced activation of mTOR, which, in turn, controls leptin production and signaling, causes a defined cellular, biochemical, and transcriptional signature that determine the outcome of Teff responses, both in vitro and in vivo. The blockade of leptin/leptin receptor signaling, induced by genetic means or by starvation, leads to impaired mTOR activity that inhibits the proliferation of Teffs in vivo. Notably, the transcriptional signature of Teffs in the presence of leptin blockade appears similar to that observed in rapamycin-treated Teffs. These results identify a novel link between nutritional status and Teff responses through the leptin–mTOR axis and define a potential target for Teff modulation in normal and pathologic conditions.


PLOS ONE | 2013

Identification and Validation of Human Papillomavirus Encoded microRNAs

Kui Qian; Tuuli Pietilä; Mikko Rönty; Frederic Michon; Mikko J. Frilander; Jarmo Ritari; Jussi Tarkkanen; Lars Paulin; Petri Auvinen; Eeva Auvinen

We report here identification and validation of the first papillomavirus encoded microRNAs expressed in human cervical lesions and cell lines. We established small RNA libraries from ten human papillomavirus associated cervical lesions including cancer and two human papillomavirus harboring cell lines. These libraries were sequenced using SOLiD 4 technology. We used the sequencing data to predict putative viral microRNAs and discovered nine putative papillomavirus encoded microRNAs. Validation was performed for five candidates, four of which were successfully validated by qPCR from cervical tissue samples and cell lines: two were encoded by HPV 16, one by HPV 38 and one by HPV 68. The expression of HPV 16 microRNAs was further confirmed by in situ hybridization, and colocalization with p16INK4A was established. Prediction of cellular target genes of HPV 16 encoded microRNAs suggests that they may play a role in cell cycle, immune functions, cell adhesion and migration, development, and cancer. Two putative viral target sites for the two validated HPV 16 miRNAs were mapped to the E5 gene, one in the E1 gene, two in the L1 gene and one in the LCR region. This is the first report to show that papillomaviruses encode their own microRNA species. Importantly, microRNAs were found in libraries established from human cervical disease and carcinoma cell lines, and their expression was confirmed in additional tissue samples. To our knowledge, this is also the first paper to use in situ hybridization to show the expression of a viral microRNA in human tissue.


PLOS ONE | 2013

Gene expression profiles in human and mouse primary cells provide new insights into the differential actions of vitamin D3 metabolites.

Pentti Tuohimaa; Jing-Huan Wang; Sofia Khan; Marianne Kuuslahti; Kui Qian; Tommi Manninen; Petri Auvinen; Mauno Vihinen; Yan-Ru Lou

1α,25-Dihydroxyvitamin D3 (1α,25(OH)2D3) had earlier been regarded as the only active hormone. The newly identified actions of 25-hydroxyvitamin D3 (25(OH)D3) and 24R,25-dihydroxyvitamin D3 (24R,25(OH)2D3) broadened the vitamin D3 endocrine system, however, the current data are fragmented and a systematic understanding is lacking. Here we performed the first systematic study of global gene expression to clarify their similarities and differences. Three metabolites at physiologically comparable levels were utilized to treat human and mouse fibroblasts prior to DNA microarray analyses. Human primary prostate stromal P29SN cells (hP29SN), which convert 25(OH)D3 into 1α,25(OH)2D3 by 1α-hydroxylase (encoded by the gene CYP27B1), displayed regulation of 164, 171, and 175 genes by treatment with 1α,25(OH)2D3, 25(OH)D3, and 24R,25(OH)2D3, respectively. Mouse primary Cyp27b1 knockout fibroblasts (mCyp27b1 −/−), which lack 1α-hydroxylation, displayed regulation of 619, 469, and 66 genes using the same respective treatments. The number of shared genes regulated by two metabolites is much lower in hP29SN than in mCyp27b1 −/−. By using DAVID Functional Annotation Bioinformatics Microarray Analysis tools and Ingenuity Pathways Analysis, we identified the agonistic regulation of calcium homeostasis and bone remodeling between 1α,25(OH)2D3 and 25(OH)D3 and unique non-classical actions of each metabolite in physiological and pathological processes, including cell cycle, keratinocyte differentiation, amyotrophic lateral sclerosis signaling, gene transcription, immunomodulation, epigenetics, cell differentiation, and membrane protein expression. In conclusion, there are three distinct vitamin D3 hormones with clearly different biological activities. This study presents a new conceptual insight into the vitamin D3 endocrine system, which may guide the strategic use of vitamin D3 in disease prevention and treatment.


Molecular and Cellular Probes | 2012

miRSeqNovel: an R based workflow for analyzing miRNA sequencing data.

Kui Qian; Eeva Auvinen; Dario Greco; Petri Auvinen

We present miRSeqNovel, an R based workflow for miRNA sequencing data analysis. miRSeqNovel can process both colorspace (SOLiD) and basespace (Illumina/Solexa) data by different mapping algorithms. It finds differentially expressed miRNAs and gives conservative prediction of novel miRNA candidates with customized parameters. miRSeqNovel is freely available at http://sourceforge.net/projects/mirseq/files.


Scientific Reports | 2016

NOGO-A/RTN4A and NOGO-B/RTN4B are simultaneously expressed in epithelial, fibroblast and neuronal cells and maintain ER morphology

Olli Rämö; Darshan Kumar; Erika Gucciardo; Merja Joensuu; Maiju Saarekas; Helena Vihinen; Ilya Belevich; Olli-Pekka Smolander; Kui Qian; Petri Auvinen; Eija Jokitalo

Reticulons (RTNs) are a large family of membrane associated proteins with various functions. NOGO-A/RTN4A has a well-known function in limiting neurite outgrowth and restricting the plasticity of the mammalian central nervous system. On the other hand, Reticulon 4 proteins were shown to be involved in forming and maintaining endoplasmic reticulum (ER) tubules. Using comparative transcriptome analysis and qPCR, we show here that NOGO-B/RTN4B and NOGO-A/RTN4A are simultaneously expressed in cultured epithelial, fibroblast and neuronal cells. Electron tomography combined with immunolabelling reveal that both isoforms localize preferably to curved membranes on ER tubules and sheet edges. Morphological analysis of cells with manipulated levels of NOGO-B/RTN4B revealed that it is required for maintenance of normal ER shape; over-expression changes the sheet/tubule balance strongly towards tubules and causes the deformation of the cell shape while depletion of the protein induces formation of large peripheral ER sheets.


Advances in Experimental Medicine and Biology | 2012

Re-analysis of Bipolar Disorder and Schizophrenia Gene Expression Complements the Kraepelinian Dichotomy

Kui Qian; Antonio Di Lieto; Jukka Corander; Petri Auvinen; Dario Greco

The differential diagnosis of schizophrenia (SZ) and bipolar disorder (BD) is based solely on clinical features and upon a subset of overlapping symptoms. Within the last years, an increasing amount of clinical, epidemiological and genetic data suggested inconsistent with the Kraepelinian dichotomy. We performed re-analysis of genome-wide gene expression data obtained from postmortem prefrontal cortex (PEC) of both BD and SZ patients with matched controls from four independent microarray experiments. We found 2,577 and 477 genes specifically altered in BD and SZ, respectively. Of these, 164 genes were shared between the syndromes. We identified genes of the transcriptional and post-transcriptional machineries altered in BD and genes of the development changed in SZ. Our results showed that the genomic expression profile of BD and SZ had some similarity but still could be well-distinguished by suitable statistical test.


Scientific Reports | 2016

HMGB4 is expressed by neuronal cells and affects the expression of genes involved in neural differentiation.

Ari Rouhiainen; Xiang Zhao; Päivi Vanttola; Kui Qian; Evgeny Kulesskiy; Juha Kuja-Panula; Kathleen Gransalke; Mikaela Grönholm; Emmanual Unni; Marvin L. Meistrich; Li Tian; Petri Auvinen; Heikki Rauvala

HMGB4 is a new member in the family of HMGB proteins that has been characterized in sperm cells, but little is known about its functions in somatic cells. Here we show that HMGB4 and the highly similar rat Transition Protein 4 (HMGB4L1) are expressed in neuronal cells. Both proteins had slow mobility in nucleus of living NIH-3T3 cells. They interacted with histones and their differential expression in transformed cells of the nervous system altered the post-translational modification statuses of histones in vitro. Overexpression of HMGB4 in HEK 293T cells made cells more susceptible to cell death induced by topoisomerase inhibitors in an oncology drug screening array and altered variant composition of histone H3. HMGB4 regulated over 800 genes in HEK 293T cells with a p-value ≤0.013 (n = 3) in a microarray analysis and displayed strongest association with adhesion and histone H2A –processes. In neuronal and transformed cells HMGB4 regulated the expression of an oligodendrocyte marker gene PPP1R14a and other neuronal differentiation marker genes. In conclusion, our data suggests that HMGB4 is a factor that regulates chromatin and expression of neuronal differentiation markers.


SpringerPlus | 2016

Low expression levels of putative HPV encoded microRNAs in cervical samples

Elina Virtanen; Tuuli Pietilä; Pekka Nieminen; Kui Qian; Eeva Auvinen

Collaboration


Dive into the Kui Qian's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dario Greco

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars Paulin

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Di Lieto

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge