Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kumpati Premkumar is active.

Publication


Featured researches published by Kumpati Premkumar.


Colloids and Surfaces B: Biointerfaces | 2013

Biogenic silver nanoparticles for cancer treatment: An experimental report

Murugaraj Jeyaraj; G. Sathishkumar; Ganeshan Sivanandhan; D. MubarakAli; Manoharan Rajesh; Renganathan Arun; Gnanajothi Kapildev; Markandan Manickavasagam; Nooruddin Thajuddin; Kumpati Premkumar; Andy Ganapathi

A generation of nanoparticles research has discussed recently. It is mandatory to elaborate the applications of biogenic nanoparticles in general and anticancereous property in particular. The present study was aimed to investigate the in vitro cytotoxicity effect of biogenic silver nanoparticles (AgNPs) against human breast cancer (MCF-7) cells towards the development of anticancer agent. Biogenic AgNPs were achieved by employing Sesbania grandiflora leaf extract as a novel reducing agent. It was well characterized by FESEM, EDAX and spectral studies showed spherical shaped nanoparticles in the size of 22 nm in slightly agglomerated form. It was surprising that biogenic AgNPs showed cytotoxic effect against MCF-7 cell lines were confirmed by MTT, AO-EB, Hochest and COMET assays. There was an immediate induction of cellular damage in terms of loss of cell membrane integrity, oxidative stress and apoptosis were found in the cell which treated with AgNPs. This may be a first report on anti-MCF-7 property of biogenic AgNPs in the fourth generation of nanoparticles research. It is necessary to study the formulation and clinical trials to establish the nano drug to treat cancer cells.


Colloids and Surfaces B: Biointerfaces | 2013

An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using Podophyllum hexandrum on human cervical carcinoma cells

Murugaraj Jeyaraj; Manoharan Rajesh; Renganathan Arun; Davoodbasha MubarakAli; G. Sathishkumar; Ganeshan Sivanandhan; Gnanajothi Kapil Dev; Markandan Manickavasagam; Kumpati Premkumar; Nooruddin Thajuddin; Andy Ganapathi

Now-a-days synthesis and characterization of silver nanoparticles (AgNPs) through biological entity is quite interesting to employ AgNPs for various biomedical applications in general and treatment of cancer in particular. This paper presents the green synthesis of AgNPs using leaf extract of Podophyllum hexandrum Royle and optimized with various parameters such as pH, temperature, reaction time, volume of extract and metal ion concentration for synthesis of AgNPs. TEM, XRD and FTIR were adopted for characterization. The synthesized nanoparticles were found to be spherical shaped with average size of 14 nm. Effects of AgNPs were analyzed against human cervical carcinoma cells by MTT Assay, quantification of ROS, RT-PCR and western blotting techniques. The overall result indicates that AgNPs can selectively inhibit the cellular mechanism of HeLa by DNA damage and caspase mediated cell death. This biological procedure for synthesis of AgNPs and selective inhibition of cancerous cells gives an alternative avenue to treat human cancer effectively.


Colloids and Surfaces B: Biointerfaces | 2013

The extra cellular synthesis of gold and silver nanoparticles and their free radical scavenging and antibacterial properties

Ch. Ramamurthy; M. Padma; I. Daisy mariya samadanam; R. Mareeswaran; Arumugam Suyavaran; M. Suresh Kumar; Kumpati Premkumar; Chinnasamy Thirunavukkarasu

The bio reduction of chloro auric acid (HAuCl(4)) and silver nitrate (AgNO(3)) is achieved extracellularly by using the aqueous extract of Solanum torvum (S. torvum) fruit. The nanoparticle formation was screened by UV-visible spectroscopy through color conversion due to surface plasma resonance bands at 560 nm and 430 nm for gold and silver nanoparticles respectively. The spherical shapes with smooth surface of gold and silver nanoparticles were analyzed through scanning electron microscope and its presence was confirmed by energy dispersive X-ray spectroscopy (SEM/EDX). The functional groups in the gold and silver salts and the bio interactive functional groups present in the S. torvum extract were characterized by employing Fourier transform infra-red spectroscopy (FTIR). The biomedical properties of gold and silver nanoparticles were premeditated as free radical scavenging activity and antibacterial static agents. Gold and silver nanoparticles serve as strong hydroxyl, superoxide, nitric oxide and DPPH radical scavengers in contrast to their corresponding metal oxides. The radical quenching properties of gold and silver nanoparticles were found to correlate with in vitro DNA protective effect. The silver nanoparticles show strong zone of inhibition against Escherichia coli, Pseudomonas and Bacillus whereas, gold nanoparticles exhibit fair zone of inhibition. To our knowledge this is the first report that S. torvum extract can reduce metal acids to nano materials.


Colloids and Surfaces B: Biointerfaces | 2013

Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Ulva lactuca

Ponnuchamy Kumar; Munisamy Govindaraju; Singaravelu Senthamilselvi; Kumpati Premkumar

In this paper, we report on biosynthesis of silver nanoparticles using Ulva lactuca (seaweed) at room temperature along with photocatalytic degradation of methyl orange dye. UV spectral analysis showed peak at 430 nm with special reference to the excitation of surfaces plasmon vibration by silver nanoparticles. FT-IR studies reveal the presence of bioactive functional groups such as phenolic compounds, amines and aromatic ring are found to be the capping and stabilizing agents of nanoparticles. The morphology of silver nanoparticles was found to be spherical and ranges about 48.59 nm as confirmed by HR-SEM. Negative zeta potential value of -34 mV suggests that the nanoparticles are highly stable in colloidal solution. XRD patterns also suggest the occurrence of spherical shaped particles due to the presence of silver ions. Further, photocatalytic degradation of methyl orange was measured spectrophotometrically by using silver as nanocatalyst under visible light illumination. The results revealed that biosynthesized silver nanoparticles using U. lactuca was found to be impressive in degrading methyl orange.


Colloids and Surfaces B: Biointerfaces | 2012

Phyto-synthesis of silver nanoscale particles using Morinda citrifolia L. and its inhibitory activity against human pathogens.

G. Sathishkumar; Chandrakasan Gobinath; Karuppiah Karpagam; Vedagiri Hemamalini; Kumpati Premkumar; S. Sivaramakrishnan

Leaf extract of Morinda citrifolia L. was assessed for the synthesis of silver nanoscale particles under different temperature and reaction time. Synthesized nanoscale (MCAgNPs) particles were confirmed by analysing the excitation of surface plasmon resonance (SPR) using UV-visible spectrophotometer at 420 nm. Further SEM, HRTEM analysis confirmed the range of particle size between 10 and 60 nm and SEAD pattern authorizes the face centered cubic (fcc) crystalline nature of the MCAgNPs. Fourier transform infrared spectrum (FTIR) of synthesized MCAgNPs confirms the presence of high amount of phenolic compounds in the plant extract which may possibly influence the reduction process and stabilization of nanoparticles. Further, inhibitory activity of MCAgNPs and plant extract were tested against human pathogens like Eschericia coli, Pseudomonas aeroginosa, Klebsiella pneumoniae, Enterobacter aerogenes, Bacillus cereus and Enterococci sp. The results indicated that the MCAgNPs showed moderate inhibitory actions against human pathogens than crude plant extract, demonstrating its antimicrobial value against pathogenic diseases.


Drug and Chemical Toxicology | 2001

INHIBITION OF GENOTOXICITY BY SAFFRON (CROCUS SATIVUS L.) IN MICE

Kumpati Premkumar; Suresh K. Abraham; Sathiyavedu Thyagarajan Santhiya; P.M Gopinath; A. Ramesh

Experiments were carried out to ascertain whether or not saffron (dried stigmas of Crocus sativus L.), a commonly used agent for flavoring and coloring food can exert modulatory effects on the in vivo genotoxicity of cisplatin (CIS), cyclophosphamide (CPH), mitomycin C(MMC) and urethane (URE). For this purpose, Swiss albino mice were pretreated for five consecutive days with three doses (20, 40 and 80 mg/kg body weight) of the aqueous extract of saffron. Genotoxic effects were assessed in the mouse bone marrow micronucleus test. The results obtained suggest that pretreatment with saffron can significantly inhibit the genotoxicity of CIS, CPH, MMC and URE. This inhibitory effect was not always dose-dependent. In addition, the hepatic glutathione S-transferase (GST) activity was assessed in the control and treated animals. No significant change in GST activity was observed after pretreatment with saffron alone. Treatment with the genotoxins alone significantly inhibited GST activity. Saffron pretreatment attenuated the inhibitory effects of the genotoxins on GST activity.


Fitoterapia | 2001

Effect of Spirulina fusiformis on cyclophosphamide and mitomycin-C induced genotoxicity and oxidative stress in mice

Kumpati Premkumar; A Pachiappan; Suresh K. Abraham; Sathiyavedu Thyagarajan Santhiya; P.M Gopinath; A. Ramesh

Spirulina fusiformis was tested for its possible in vivo protective effects against cyclophosphamide (CP) and mitomycin-C (MMC) induced genotoxicity and oxidative stress in mice. Pre-treatment with S. fusiformis (250, 500 and 1000 mg kg(-1), p.o., daily for 5 days) significantly reduced the chromosomal damage and lipid peroxidation with concomitant changes in antioxidants and detoxification systems. All the three tested doses were effective in exerting a protective effect against CP and MMC.


Human & Experimental Toxicology | 2006

Protective effect of saffron (Crocus sativus L.) aqueous extract against genetic damage induced by anti-tumor agents in mice

Kumpati Premkumar; C. Thirunavukkarasu; Suresh K. Abraham; Sathiyavedu Thyagarajan Santhiya; A. Ramesh

The genotoxic potential of anti-tumor drugs limits their efficacy in the treatment of cancers. Since ancient times, saffron (dried stigmas of Crocus sativus L.) has been used as a spice and medicinal herb. Saffron is a rich source of carotenoids and is known for its anti-cancer and antitumor properties. The present study was designed to ascertain the chemoprotective potential of saffron against the genotoxicity of three well-known anti-tumor drugs-cisplatin (CIS), cyclophosphamide (CPH) and mitomycin C (MMC)-using comet assay. Three doses of saffron (20, 40 and 80 mg/kg b.w.) were orally administered to mice for five consecutive days prior to the administration of anti-tumor drugs under investigation. Pre-treatment with saffron significantly inhibited anti-tumor drugs induced cellular DNA damage (strand breaks) as revealed by decreased comet tail length, tail moment and percent DNA in the tail. These findings, together with our previous results, suggest a potential role for saffron as an anti-genotoxic, anti-oxidant and chemopreventive agent and could be used as an adjuvant in chemotherapeutic applications.


Journal of Materials Chemistry B | 2013

Doxorubicin conjugated gold nanorods: a sustained drug delivery carrier for improved anticancer therapy

Rajiu Venkatesan; Arunkumar Pichaimani; Kalpana Hari; Preetham Kumar Balasubramanian; Jeganathan Kulandaivel; Kumpati Premkumar

Theranostic nanoparticles with multifunctional ability have been emerging as a new platform for biomedical applications such as imaging, sensing and drug delivery. Despite gold nanorods (Au NRs) being an excellent nanosource with multifunctional versatility, they have certain limitations in biomedical applications, which include surfactant toxicity, biological stability and controlled drug release kinetics. Herein, we have developed Au NR-doxorubicin conjugates (DOX@PSS-Au NR) with improved drug loading efficiency (55 ± 6%) and minimum CTAB toxicity, by employing Au NRs (4.4 ± 0.5 aspect ratio) coated with poly(sodium 4-styrenesulfonate) (PSS). DOX@PSS-Au NR conjugates exhibited higher biological stability with sustained drug release kinetics at pH 5. The binding events of DOX molecules onto the PSS coated gold nanorods (PSS-Au NRs) were monitored through fluorescence quenching and the longitudinal surface plasmon resonance signals. Furthermore the anti-cancer potential and apoptosis inducing efficiency of DOX@PSS-Au NR conjugates in MCF-7 cells revealed higher therapeutic efficiency than free DOX, as corroborated through morphological assessment and in vitro cytotoxicity assay. In addition, DOX@PSS-Au NR conjugates showed efficient cellular entry and uniform intracellular distribution, suggesting the augmenting effect of chemotherapeutic drugs by Au NRs. Thus DOX@PSS-Au NR conjugates demonstrate significant therapeutic potential, suggesting their potential in anticancer therapy.


Journal of Photochemistry and Photobiology B-biology | 2015

Doxorubicin loaded polymeric gold nanoparticles targeted to human folate receptor upon laser photothermal therapy potentiates chemotherapy in breast cancer cell lines

Hussaina Banu; Dipinder Kaur Sethi; Andre Edgar; Adhnaan Sheriff; Nuthan Rayees; N. Renuka; S.M. Faheem; Kumpati Premkumar; Geetha Vasanthakumar

The current research focuses on the application of folate conjugated and doxorubicin loaded polymeric gold nanoparticles (GNPs) for the targeted treatment of folate receptor overexpressing breast cancers, augmented by adjunctive laser photothermal therapy. Herein, GNPs surface modified with folate, drug doxorubicin and polyethylene glycol were engineered and were used as vehicles for folate receptor targeted delivery of doxorubicin into cancer cells. Subsequently, the GNPs were photo-excited using laser light for mediating hyperthermia in the cancer cells. In vitro studies were performed to validate the efficacy of the combined modality of folate conjugated and doxorubicin loaded polymeric GNP mediated chemotherapy followed by photothermal therapy in comparison to treatment with free drug; and the combination modality showed better therapeutic efficacy than that of plain doxorubicin treatment in MDA-MB-231 breast cancer cells that express increased levels of surface folate receptors when compared to MCF-7 breast cancer cells that express low levels of folate receptor. The mechanism of cell death was investigated using fluorescent microscopy. Immunoassays showed the up-regulation of the pro-apoptotic protein p53 and down-regulation of the anti-apoptotic protein Bcl-2. Collectively, these results suggest that the folate tagged doxorubicin loaded GNPs are an attractive platform for targeted delivery of doxorubicin and are agents suitable for photothermal cancer therapy.

Collaboration


Dive into the Kumpati Premkumar's collaboration.

Top Co-Authors

Avatar

Suresh K. Abraham

Jawaharlal Nehru University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andy Ganapathi

Bharathidasan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deepa Selvi Rani

Centre for Cellular and Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge