Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kumud Acharya is active.

Publication


Featured researches published by Kumud Acharya.


Oecologia | 2004

Effects of stoichiometric dietary mixing on Daphnia growth and reproduction

Kumud Acharya; Marcia Kyle; James J. Elser

Herbivores often encounter nutritional deficiencies in their diets because of low nutrient content of plant biomass. Consumption of various diet items with different nutrient contents can potentially alleviate these nutritional deficiencies. However, most laboratory studies and modeling of herbivorous animals have been done with diets in which all food has uniform nutrient content. It is not clear whether heterogeneous versus uniform food of equal overall nutrient content is of equivalent nutritional value. We tested the effects of dietary mixing on performance of a model organism, Daphnia. We fed two species of Daphnia ( D. galeata, D. pulicaria) with diets of equivalent bulk stoichiometric food quality (C:P) and studied whether they would produce equivalent performance when C:P was uniform among cells or when the diet involved a mixture of high C:P and low C:P cells. Daphnia were fed saturating and limiting concentrations of a uniform food of moderate C:P (UNI) or mixtures (MIX) of high C:P (LOP) and low C:P (HIP) algae prepared to match C:P in UNI. Daphnia were also fed HIP and LOP algae separately. Juvenile growth rate and adult fecundity were measured. D. galeata performance in UNI and MIX treatments did not differ, indicating that partitioning of C and P among particles did not affect dietary quality. Similarly, D. pulicaria‘s performance was similar in the MIX and UNI treatments but only at low food abundance. In the high food treatment, both growth and reproduction were higher in the MIX treatment, indicating some benefit of a more heterogeneous diet. The mechanisms for this improvement are unclear. Also, food quality affected growth and reproduction even at low food levels for both D. pulicaria and D. galeata. Our results indicate that some species of zooplankton can benefit from stoichiometric heterogeneity on diet.


Chemosphere | 2012

Isolation and identification of an anti-algal compound from Artemisia annua and mechanisms of inhibitory effect on algae

Lixiao Ni; Kumud Acharya; Xiangyang Hao; Shiyin Li

The goals of this work were to isolate and identify an anti-algal compound from extracts of Artemisia annua and study its mode of action on Microcystis aeruginosa. The anti-algal compound was isolated from the extracts using column chromatography and activity-guided fractionation methods. Artemisinin with strong anti-algal activity was identified by gas chromatography-mass spectrometry and (1)H Nuclear Magnetic Resonance. The EC(50) of artemisinin on M. aeruginosa was 3.2mg L(-1). Artemisinin decreased the soluble protein content and increased the superoxide dismutase activity and ascorbic acid content of M. aeruginosa, but exerted no effect on soluble sugar content. The results suggested the mode of action of artemisinin on algae may primarily be the increasing level of reactive oxygen species in algae cells. The results of our research could aid in the development of new anti-algal substances and lead to further study of mechanisms of inhibitory effect on algae.


Stochastic Environmental Research and Risk Assessment | 2012

Statistical downscaling of extremes of precipitation and temperature and construction of their future scenarios in an elevated and cold zone

Xiaoyan Wang; Tao Yang; Quanxi Shao; Kumud Acharya; Weiguang Wang; Zhongbo Yu

Reliable projections of extremes at finer spatial scales are important in assessing the potential impacts of climate change on societal and natural systems, particularly for elevated and cold regions in the Tibetan Plateau. This paper presents future projections of extremes of daily precipitation and temperature, under different future scenarios in the headwater catchment of Yellow River basin over the 21st century, using the statistical downscaling model (SDSM). The results indicate that: (1) although the mean temperature was simulated perfectly, followed by monthly pan evaporation, the skill scores in simulating extreme indices of precipitation are inadequate; (2) The inter-annual variabilities for most extreme indices were underestimated, although the model could reproduce the extreme temperatures well. In fact, the simulation of extreme indices for precipitation and evaporation were not satisfactory in many cases. (3) In future period from 2011 to 2100, increases in the temperature and evaporation indices are projected under a range of climate scenarios, although decreasing mean and maximum precipitation are found in summer during 2020s. The findings of this work will contribute toward a better understanding of future climate changes for this unique region.


Lake and Reservoir Management | 2010

Modeling water ages and thermal structure of Lake Mead under changing water levels

Yiping Li; Kumud Acharya; Dong Chen; Mark C. Stone

Abstract Water age and thermal structure of Lake Mead were modeled using the 3-dimensional hydrodynamic Environmental Fluid Dynamics Code (EFDC). The model was calibrated using observed data from 2005 and then applied to simulate 2 scenarios: high-stage with an initial water level of 370.0 m and low-stage with a projected initial water level of 320.0 m. The high-stage simulation described predrought lake hydrodynamics, while the low-stage simulation projected how lake circulation could respond under significant lake drawdown, should drought conditions persist. The results indicate that water level drawdown plays an important role in thermal stratification and water movement of Lake Mead during receding water levels. The impact of the dropping water level on lake thermal stratification is more significant in shallow regions such as Las Vegas Bay. Depth-averaged (the mean value of 30 vertical layers) water temperature in the low-stage was estimated to increase by 4–7 C and 2–4 C for shallow (<20 m) and deep (>70 m) regions, respectively. Further, depth-averaged water age decreased about 70–90 d for shallow regions and 90–120 d for deep regions under the simulated drought scenario. Such changes in temperature and water age due to continuous drought will have a strong influence on the hydrodynamic processes of Lake Mead. This study provides a numerical tool to support adaptive management of regional water resources by lake managers.


Hydrobiologia | 2009

Overcrowding, food and phosphorus limitation effects on ephipphia production and population dynamics in the invasive species Daphnia lumholtzi

Allison S. Smith; Kumud Acharya; Jeffrey D. Jack

Daphnia lumholtzi has been very successful in colonizing North America since its appearance in Texas in 1990. Although previous studies have sought to link its success as an invasive species with various aspects of its population biology, there is little experimental data linking the invasion success of D. lumholtzi with its autecology, specifically its reproduction strategy. In this study we sought to link food quality and quantity to diapause in D. lumholtzi through a variation in phosphorus (P) content of algae, food quantity, and light level. We also assessed the effect of Daphnia peak population densities on reproductive rates and production of resting eggs. We found that when food is abundant, per capita ephippia production may be limited by P, but under food limitation conditions, there is no significant effect of food quality on ephippia production. Our results suggest that a combination of food quality/quantity and population density may work together to induce the production of resting eggs in this invasive species.


Chemosphere | 2015

Effect of linoleic acid sustained-release microspheres on Microcystis aeruginosa antioxidant enzymes activity and microcystins production and release.

Lixiao Ni; Xiaoting Jie; Peifang Wang; Shiyin Li; Guoxiang Wang; Yiping Li; Yong Li; Kumud Acharya

The objective of this work was to identify the optimal dose range for good anti-algal effect of linoleic acid (LA) sustained-release microspheres and investigate their impact on the antioxidant enzymes (super oxide dismutase, Catalase and Peroxidase) activity changes of Microcystis aeruginosa, as well as the production and release of microcystins (MCs). Based on measured changes in algal cell density and inhibitory ratio (IR), the optimal dose of LA microspheres was 0.3 g L(-1) with over 90% of IR in this study. The Chlorophyll a content and antioxidant enzymes activity in the LA microspheres group decreased markedly until beyond the minimal detection limit after 16 d and 9 d, respectively. In addition, LA microspheres demonstrated no significant impact on the extracellular release of MCs during the culturing period. The amount of intracellular microcystin-LR (MC-LR) per 10(6) algal cells in LA microspheres group was highest among all groups during the whole experimental process. Under the sustained stress of LA released from LA microspheres, the LA microspheres could decrease the production and release of algal toxins. There was no increase in the total amount of MC-LR in the algal cell culture medium. These indicated that LA sustained-release microspheres represent a high degree of ecological safety and their practical applications for the treatment of water undergoing algal blooms need further study.


Journal of Hazardous Materials | 2016

Removal of trimethoprim, sulfamethoxazole, and triclosan by the green alga Nannochloris sp.

Xuelian Bai; Kumud Acharya

Trimethoprim (TMP), sulfamethoxazole (SMX), and triclosan (TCS) are widely used and continuously released into aquatic environments. Freshwater algae can be responsible for the uptake and transfer of the contaminants because they are a major food source for most aquatic organisms. This research applied incubation studies to evaluate the removal efficiency of TMP, SMX, and TCS by the green alga Nannochloris sp. The results showed that the hydrophilic antibiotics TMP and SMX remained in the algal culture at 100% and 68%, respectively, after 14days of incubation, and therefore were not significantly removed from the medium. However, the lipophilic antimicrobial TCS was significantly removed from the medium. Immediately after incubation began, 74% of TCS dissipated and 100% of TCS was removed after 7days of incubation. Additionally, over 42% of TCS was found associated with the algal cells throughout the incubation. The results demonstrate that the presence of Nannochloris sp. eliminated TCS in the aquatic system, but could not significantly remove the antibiotics TMP and SMX. The removal mechanisms of SMX and TCS were found to be different in the algal culture. Algae-promoted photolysis was the primary process for removing SMX and algae-mediated uptake played a major role in removing TCS.


Archiv Fur Hydrobiologie | 2006

Stoichiometry of Daphnia lumholtzi and their invasion success: Are they linked?

Kumud Acharya; Jeffrey D. Jack; Allison S. Smith

Daphnia lumholtzi, a cladoceran native to Australia, South Africa and Asia, has been spreading through the rivers and reservoirs of the Southern and Midwestern US since its first detection in 1989 in Lake Texoma. Although several studies have documented D. lumholtzi dispersal in the US, there is little data linking its life history characteristics with its colonization success. In this study we investigated D. lumholtzis body stoichiometry, growth and fecundity responses on natural seston vs. uni-algal cultures of Scenedesmus acutus (high and low quality and quantity). We also assessed resting egg production via a series of growth and population experiments to see if these life history parameters are linked with its invasion success. The first experiment examined the effect of diet quality and quantity on growth rates and fecundity of D. lumholtzi. The second experiment examined the growth performance of D. lumholtzi on ambient and lower concentrations of natural seston vs. uni-algae (S. acutus) treatments. In the third experiment, the relationship of D. lumholtzi population density and resting egg production was compared with two other widely distributed (Northern Hemisphere) species (D. pulicaria and D. magna). Growth rate, fecundity and body % P (dry mass) data from the quality-quantity experiment showed that D. lumholtzi performed best under P-rich, high food conditions and worst under P-deficient, low food conditions, exhibiting effects of both food quality and quantity. None of the life history characteristics we examined were significantly different from those of the tested native species of Daphnia. However, %RNA (dry mass) of D. lumholtzi was significantly higher than the tested native species (D. lumholtzi ≈10 %; D. pulicaria, D. magna <8%). The algae-seston experiment also showed that D. lumholtzi growth performance did not differ from that of the tested native species, but the population and resting egg production experiment showed that at similar food and environmental conditions D. lumholtzi produced significantly more resting eggs than either D. magna and D. pulicaria. The higher RNA levels in D. lumholtzi may facilitate quicker resting egg production, consistent with the Growth Rate Hypothesis. Higher resting egg production may be an important component in invasion success of D. lumholtzi in North America.


Natural Hazards | 2014

Evaluation of drought and wetness episodes in a cold region (Northeast China) since 1898 with different drought indices

Binquan Li; Zhongmin Liang; Zhongbo Yu; Kumud Acharya

Drought identification and drought severity characterization are crucial to understand water scarcity processes. Evolution of drought and wetness episodes in the upper Nen River (UNR) basin have been analyzed for the period of 1951–2012 using meteorological drought indices and for the period of 1898–2010 using hydrological drought indices. There were three meteorological indices: one based on precipitation [the Standardized Precipitation Index (SPI)] and the other two based on water balance with different formulations of potential evapotranspiration (PET) in the Standardized Precipitation Evapotranspiration Index (SPEI). Moreover, two hydrological indices, the Standardized Runoff Index and Standardized Streamflow Index, were also applied in the UNR basin. Based on the meteorological indices, the results showed that the main dry period of 1965–1980 and wet periods of 1951–1964 and 1981–2002 affected this cold region. It was also found that most areas of the UNR basin experienced near normal condition during the period of 1951–2012. As a whole, the UNR basin mainly had the drought episodes in the decades of 1910, 1920, 1970 and 2000 based on hydrological indices. Also, the severity of droughts decreased from the periods of 1898–1950 to 1951–2010, while the severity of floods increased oppositely during the same periods. A correlation analysis showed that hydrological system needs a time lag of one or more months to respond to meteorological conditions in this cold region. It was also found that although precipitation had a major role in explaining temporal variability of drought, the influence of PET was not negligible. However, the sole temperature driver of PET had an opposite effect in the UNR basin (i.e., misestimating the drought detection) and was inferior to the SPI, which suggests that the PET in the SPEI should be determined by using underlying physical principles. This finding is an important implication for the drought research in future.


Archive | 2013

Climate Change in the Himalayas: Current State of Knowledge

Mahesh R. Gautam; Govinda R. Timilsina; Kumud Acharya

This paper reviews the literature on the potential biophysical and economic impacts of climate change in the Himalayas. Existing observations indicate that the temperature is rising at a higher rate in Nepal and Chinese regions of the Himalayas compared with rest of the Himalayas. A declining trend of monsoon in the western Indian Himalayas and an increasing trend in the eastern Indian Himalayas have been observed, whereas increasing precipitation and stream flow in many parts of Tibetan Plateau are noted. Glaciers in both the eastern and western Himalayas are mostly retreating, but the majority of the glaciers in Karakorum are either stable or advancing slowly. Expansion of glacier lakes is reported, with the highest rate in Nepal and Bhutan. Most literature predicts increases in temperature and monsoon precipitations and decreases in winter precipitations in the future thereby leading to monsoon flooding and increased sediments in stream flow. Available hydrological simulations indicate reduced rainfall and shrinkage of glacier thereby leading to shortage of water supply for power generation and irrigation in winter particularly in highly glaciated basins. Projected economic impacts of glacial lake outburst floods can be substantial on the developed river basin with infrastructures and population centers. However, there is a clear gap in knowledge of economic impacts of climate change in the Himalayas.

Collaboration


Dive into the Kumud Acharya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark C. Stone

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

Shiyin Li

Nanjing Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge