Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kun-Lun Huang is active.

Publication


Featured researches published by Kun-Lun Huang.


PLOS ONE | 2013

Protective Effect of Hypercapnic Acidosis in Ischemia-Reperfusion Lung Injury Is Attributable to Upregulation of Heme Oxygenase-1

Shu-Yu Wu; Min-Hui Li; Fu-Chang Ko; Geng-Chin Wu; Kun-Lun Huang; Shi-Jye Chu

Hypercapnic acidosis (HCA) has protective effects in animal models of acute lung injury, but the mechanism underlying the effect of HCA is unclear. Heme oxygenase-1 (HO-1) is an antioxidant enzyme that protects tissue from inflammation injury. We investigated whether HO-1 contributes to the protective effects of HCA in ischemia-reperfusion (IR)-induced lung injury. Typical acute lung injury in rats was successfully induced by 40 min of ischemia and 90 min of reperfusion in an isolated perfused lung model. The rat lungs were randomly assigned to the control group, IR group or IR + HCA group with or without zinc protoporphyrin IX (ZnPP), an HO-1 activity inhibitor. At the end of the experiment, bronchoalveolar lavage fluid (BALF) and lung tissues were collected to evaluate the degree of lung injury. In in vitro experiments, HO-1 siRNA transfected A549 cells were exposed to a normoxic or hypoxia-reoxygenation (H/R) environment in the presence or absence of HCA. IR caused significant increases in the pulmonary arterial pressure, lung weight to body weight and wet/dry ratios, lung weight gain, capillary filtration coefficient, lung injury scores, neutrophil infiltration, and concentrations of protein and TNF-α in the BALF. IR also induced degradation of inhibitor of nuclear factor (NF)-κB-α, increased IκB kinase (IKK)-β phosphorylation and nuclear translocation of NF-κB, and up-regulated HO-1 expression and activity. Furthermore, IR decreased Bcl-2 protein expression and increased the number of active caspase-3 stained cells. HCA treatment enhanced HO-1 expression and activity, and accordingly reduced IKK-NF-κB signaling, inhibited apoptosis, and significantly attenuated IR-induced changes. Treatment with ZnPP partially blocked the protective effect of HCA. In addition, HO-1 siRNA significantly reversed HCA-mediated inhibition of NF-κB signaling in A549 cells subjected to H/R. In conclusion, the protective effect of HCA in IR lung injury in rats was mediated in part by the anti-inflammatory and anti-apoptotic action of HO-1.


Anesthesiology | 2015

Valproic Acid Attenuates Acute Lung Injury Induced by Ischemia–reperfusion in Rats

Shu-Yu Wu; Shih-En Tang; Fu-Chang Ko; Geng-Chin Wu; Kun-Lun Huang; Shi-Jye Chu

Background:Evidence reveals that histone deacetylase (HDAC) inhibition has potential for the treatment of inflammatory diseases. The protective effect of HDAC inhibition involves multiple mechanisms. Heme oxygenase-1 (HO-1) is protective in lung injury as a key regulator of antioxidant response. The authors examined whether HDAC inhibition provided protection against ischemia–reperfusion (I/R) lung injury in rats by up-regulating HO-1 activity. Methods:Acute lung injury was induced by producing 40 min of ischemia followed by 60 min of reperfusion in isolated perfused rat lungs. The rats were randomly allotted to control group, I/R group, or I/R + valproic acid (VPA) group with or without an HO-1 activity inhibitor (zinc protoporphyrin IX) (n = 6 per group). Results:I/R caused significant increases in the lung edema, pulmonary arterial pressure, lung injury scores, tumor necrosis factor-&agr;, and cytokine-induced neutrophil chemoattractant-1 concentrations in bronchoalveolar lavage fluid. Malondialdehyde levels, carbonyl contents, and myeloperoxidase-positive cells in lung tissue were also significantly increased. I/R stimulated the degradation of inhibitor of nuclear factor-&kgr;B-&agr;, nuclear translocation of nuclear factor-&kgr;B, and up-regulation of HO-1 activity. Furthermore, I/R decreased B-cell lymphoma-2, heat shock protein 70, acetylated histone H3 protein expression, and increased the caspase-3 activity in the rat lungs. In contrast, VPA treatment significantly attenuated all the parameters of lung injury, oxidative stress, apoptosis, and inflammation. In addition, VPA treatment also enhanced HO-1 activity. Treatment with zinc protoporphyrin IX blocked the protective effect of VPA. Conclusions:VPA protected against I/R-induced lung injury. The protective mechanism may be partly due to enhanced HO-1 activity following HDAC inhibition.


PLOS ONE | 2015

Membrane Translocation of IL-33 Receptor in Ventilator Induced Lung Injury

Shih-Hsing Yang; Jau-Chen Lin; Shu-Yu Wu; Kun-Lun Huang; Fang Jung; Ming-Chieh Ma; Guoo-Shyng Wang Hsu; Guey-Mei Jow

Ventilator-induced lung injury is associated with inflammatory mechanism and causes high mortality. The objective of this study was to discover the role of IL-33 and its ST2 receptor in acute lung injury induced by mechanical ventilator (ventilator-induced lung injury; VILI). Male Wistar rats were intubated after tracheostomy and received ventilation at 10 cm H2O of inspiratory pressure (PC10) by a G5 ventilator for 4 hours. The hemodynamic and respiratory parameters were collected and analyzed. The morphological changes of lung injury were also assessed by histological H&E stain. The dynamic changes of lung injury markers such as TNF-α and IL-1β were measured in serum, bronchoalveolar lavage fluid (BALF), and lung tissue homogenization by ELISA assay. During VILI, the IL-33 profile change was detected in BALF, peripheral serum, and lung tissue by ELISA analysis. The Il-33 and ST2 expression were analyzed by immunohistochemistry staining and western blot analysis. The consequence of VILI by H&E stain showed inducing lung congestion and increasing the expression of pro-inflammatory cytokines such as TNF-α and IL-1β in the lung tissue homogenization, serum, and BALF, respectively. In addition, rats with VILI also exhibited high expression of IL-33 in lung tissues. Interestingly, the data showed that ST2L (membrane form) was highly accumulated in the membrane fraction of lung tissue in the PC10 group, but the ST2L in cytosol was dramatically decreased in the PC10 group. Conversely, the sST2 (soluble form) was slightly decreased both in the membrane and cytosol fractions in the PC10 group compared to the control group. In conclusion, these results demonstrated that ST2L translocation from the cytosol to the cell membranes of lung tissue and the down-expression of sST2 in both fractions can function as new biomarkers of VILI. Moreover, IL-33/ST2 signaling activated by mechanically responsive lung injury may potentially serve as a new therapy target.


Inflammation | 2013

Systemic Administration of FC-77 Dampens Ischemia–Reperfusion-Induced Acute Lung Injury in Rats

Shi-Jye Chu; Kun-Lun Huang; Shu-Yu Wu; Fu-Chang Ko; Geng-Chin Wu; Rui-Ying Li; Min-Hui Li

Systemic administration of perfluorocarbons (PFCs) reportedly attenuates acute lung injury induced by acid aspiration and phorbol myristate acetate. However, the effects of PFCs on ischemia–reperfusion (IR)-induced lung injury have not been investigated. Typical acute lung injury was induced in rats by 60xa0min of ischemia and 60xa0min of reperfusion in isolated and perfused rat lung model. Rat lungs were randomly assigned to receive PBS (control), 1xa0% FC-77, IR only, or IR with different doses of FC-77 (0.1xa0%, 0.5xa0%, or 1xa0%). Subsequently, bronchoalveolar lavage fluid (BALF), perfusate, and lung tissues were collected to evaluate the degree of lung injury. IR caused a significant increase in the following parameters: pulmonary arterial pressure, capillary filtration coefficient, lung weight gain, lung weight/body weight ratio, wet/dry lung weight ratio, and protein concentration in BALF. TNF-α and cytokine-induced neutrophil chemoattractant-1 concentrations in perfusate samples and MDA concentration and MPO activities in lung tissues were also significantly increased. Histopathology showed increased septal thickness and neutrophil infiltration in the lung tissues. Furthermore, NF-κB activity was significantly increased in the lungs. However, pretreatment with 1xa0% FC-77 prior to IR significantly attenuated the increases in these parameters. In conclusion, our results suggest that systemic FC-77 administration had a protective effect on IR-induced acute lung injury. These protective mechanisms may have been mediated by the inhibition of NF-κB activation and attenuation of subsequent inflammatory response.


Journal of Surgical Research | 2011

Lateral Position with the Remaining Lung Uppermost Improves Matching of Pulmonary Ventilation and Perfusion in Pneumonectomized Pigs

Chou-Chin Lan; Hsian-He Hsu; Chin-Pyng Wu; Kun-Lun Huang; Shih-Chun Lee; Chia-Yu Chang; Chung-Kan Peng; Hung Chang

BACKGROUNDnPneumonectomy is a major surgery. Severe hypoxemia sometimes occurs after pneumonectomy. Effective gas exchange depends on perfect pulmonary ventilation (V˙(A)) and perfusion (Q˙) matching. The effect of position on V˙(A)/Q˙ matching after pneumonectomy is not clear. We therefore conducted this study to examine the effects of supine, left lateral decubitus (LLD), and right lateral decubitus (RLD) positions on V˙(A)/Q˙ matching and gas exchange after pneumonectomy in a porcine model.nnnMETHODSnTwelve pigs were anesthetized and mechanically ventilated; six pigs received right pneumonectomy and six pigs received left pneumonectomy. The positions of the pigs were changed to supine, LLD, and RLD in random order after pneumonectomy. We applied intravenous and aerosolized high-resolution fluorescent microsphere technique (FMT) to mark V˙(A) and Q˙ in conjunction with arterial blood gas analysis to study these variables at different positions. Mechanical ventilation was kept constant throughout.nnnRESULTSnDifferent positions after pneumonectomy lead to significant changes in heterogeneity and matching of V˙(A)/Q˙. In right pneumonectomized pigs, the highest PaO(2), lowest V˙(A)/Q˙heterogeneity, and highest matching of V˙(A)/Q˙ was in RLD. In left pneumonectomized pigs, the highest PaO(2), lowest V˙(A)/Q˙ heterogeneity, and highest matching of V˙(A)/Q˙ was in LLD.nnnCONCLUSIONSnThe lateral position with the remaining lung uppermost leads to the highest V˙(A)/Q˙ matching and best gas exchange after pneumonectomy.


Journal of Surgical Research | 2015

Hypercapnic acidosis prolongs survival of skin allografts

Yuan-Sheng Tzeng; Shu-Yu Wu; Yi-Jen Peng; Chia-Pi Cheng; Shih-En Tang; Kun-Lun Huang; Shi-Jye Chu

BACKGROUNDnEvidence reveals that hypercapnic acidosis (HCA) modulates immune responses. However, the effect of HCA on allogenic skin graft rejection is unknown. We examined whether HCA might improve skin graft survival in a mouse model of skin transplantation.nnnMETHODSnA major histocompatibility-complex-incompatible BALB/c to C57BL/6 mouse skin transplantation model was used. Animals were divided into sham control, air, and HCA groups. Mice in the HCA group were exposed daily to 5% CO2 in air for 1xa0h. Skin grafts were harvested for histologic analyses. Nuclear factor (NF)-κB activation was determined in harvested draining lymph nodes. Spleen weights and serum levels of tumor necrosis factor-α and chemokine (C-X-C motif) ligand 2 were serially assessed after skin transplantation.nnnRESULTSnSkin allografts survived significantly longer in the HCA group of mice than those in the air group. Allografted mice in the air group underwent a 2.1-fold increase in spleen weight compared with a 1.1-fold increase in the mice with HCA on day 3. There were increased inflammatory cell infiltration, folliculitis, focal dermal-epidermal separation, and areas of epidermal necrosis in the air group that were reduced with HCA treatment. In the HCA group, CD8(+) T cell infiltration at day 7 decreased significantly but not CD4(+) T cell infiltration. In addition, HCA significantly suppressed serum tumor necrosis factor-α on days 1 and 3 and chemokine (C-X-C motif) ligand 2 on days 1 and 10. Furthermore, the HCA group had remarkably suppressed NF-κB activity in draining lymph nodes.nnnCONCLUSIONSnHCA significantly prolonged the survival of incompatible skin allografts in mice by reducing proinflammatory cytokine production, immune cell infiltration, and NF-κB activation.


PLOS ONE | 2017

Experimental chronic kidney disease attenuates ischemia-reperfusion injury in an ex vivo rat lung model

Chung-Kan Peng; Kun-Lun Huang; Chou-Chin Lan; Yu-Juei Hsu; Geng-Chin Wu; Chia-Hui Peng; Chin-Pyng Wu; Khee-Siang Chan

Lung ischemia reperfusion injury (LIRI) is one of important complications following lung transplant and cardiopulmonary bypass. Although patients on hemodialysis are still excluded as lung transplant donors because of the possible effects of renal failure on the lungs, increased organ demand has led us to evaluate the influence of chronic kidney disease (CKD) on LIRI. A CKD model was induced by feeding Sprague-Dawley rats an adenine-rich (0.75%) diet for 2, 4 and 6 weeks, and an isolated rat lung in situ model was used to evaluate ischemia reperfusion (IR)-induced acute lung injury. The clinicopathological parameters of LIRI, including pulmonary edema, lipid peroxidation, histopathological changes, immunohistochemistry changes, chemokine CXCL1, inducible nitric oxide synthase (iNOS), proinflammatory and anti-inflammatory cytokines, heat shock protein expression, and nuclear factor-κB (NF-κB) activation were determined. Our results indicated that adenine-fed rats developed CKD as characterized by increased blood urea nitrogen and creatinine levels and the deposition of crystals in the renal tubules and interstitium. IR induced a significant increase in the pulmonary arterial pressure, lung edema, lung injury scores, the expression of CXCL1 mRNA, iNOS level, and protein concentration of the bronchial alveolar lavage fluid (BALF). The tumor necrosis factor-α levels in the BALF and perfusate; the interleukin-10 level in the perfusate; and the malondialdehyde levels in the lung tissue and perfusate were also significantly increased by LIRI. Counterintuitively, adenine-induced CKD significantly attenuated the severity of lung injury induced by IR. CKD rats exhibited increased heat shock protein 70 expression and decreased activation of NF-κB signaling. In conclusion, adenine-induced CKD attenuated LIRI by inhibiting the NF-κB pathway.


PLOS ONE | 2016

Anti-Vascular Endothelial Growth Factor Antibody Suppresses ERK and NF-κB Activation in Ischemia-Reperfusion Lung Injury

Chou-Chin Lan; Chung-Kan Peng; Shih-En Tang; Shu-Yu Wu; Kun-Lun Huang; Chin-Pyng Wu

Ischemia-reperfusion (IR)-induced acute lung injury (ALI) is implicated in several clinical conditions like lung transplantation, acute pulmonary embolism after thrombolytic therapy, re-expansion of collapsed lung from pneumothorax or pleural effusion, cardiopulmonary bypass and etc. Because mortality remains high despite advanced medical care, prevention and treatment are important clinical issues for IR-induced ALI. Vascular endothelial growth factor (VEGF) has a controversial role in ALI. We therefore conducted this study to determine the effects of anti-VEGF antibody in IR-induced ALI. In the current study, the IR-induced ALI was conducted in a rat model of isolated-perfused lung in situ in the chest. The animals were divided into the control, control + preconditioning anti-VEGF antibody (bevacizumab, 5mg/kg), IR, IR + preconditioning anti-VEGF antibody (1mg/kg), IR+ preconditioning anti-VEGF antibody (5mg/kg) and IR+ post-IR anti-VEGF antibody (5mg/kg) group. There were eight adult male Sprague-Dawley rats in each group. The IR caused significant pulmonary micro-vascular hyper-permeability, pulmonary edema, neutrophilic infiltration in lung tissues, increased tumor necrosis factor-α, and total protein concentrations in bronchoalveolar lavage fluid. VEGF and extracellular signal-regulated kinase (ERK) were increased in IR-induced ALI. Administration of preconditioning anti-VEGF antibody significantly suppressed the VEGF and ERK expressions and attenuated the IR-induced lung injury. This study demonstrates the important role of VEGF in early IR-induced ALI. The beneficial effects of preconditioning anti-VEGF antibody in IR-induced ALI include the attenuation of lung injury, pro-inflammatory cytokines, and neutrophilic infiltration into the lung tissues.


PLOS ONE | 2017

Carbonic anhydrase inhibitor attenuates ischemia-reperfusion induced acute lung injury

Chou-Chin Lan; Chung-Kan Peng; Shih-En Tang; Kun-Lun Huang; Chin-Pyng Wu

Ischemia-reperfusion (IR)-induced acute lung injury (ALI) is implicated in several clinical conditions including lung transplantation, cardiopulmonary bypass surgery, re-expansion of collapsed lung from pneumothorax or pleural effusion and etc. IR-induced ALI remains a challenge in the current treatment. Carbonic anhydrase has important physiological function and influences on transport of CO2. Some investigators suggest that CO2 influences lung injury. Therefore, carbonic anhydrase should have the role in ALI. This study was undertaken to define the effect of a carbonic anhydrase inhibitor, acetazolamide (AZA), in IR-induced ALI, that was conducted in a rat model of isolated-perfused lung with 30 minutes of ischemia and 90 minutes of reperfusion. The animals were divided into six groups (n = 6 per group): sham, sham + AZA 200 mg/kg body weight (BW), IR, IR + AZA 100 mg/kg BW, IR + AZA 200 mg/kg BW and IR+ AZA 400 mg/kg BW. IR caused significant pulmonary micro-vascular hyper-permeability, pulmonary edema, pulmonary hypertension, neutrophilic sequestration, and an increase in the expression of pro-inflammatory cytokines. Increases in carbonic anhydrase expression and perfusate pCO2 levels were noted, while decreased Na-K-ATPase expression was noted after IR. Administration of 200mg/kg BW and 400mg/kg BW AZA significantly suppressed the expression of pro-inflammatory cytokines (TNF-α, IL-1, IL-6 and IL-17) and attenuated IR-induced lung injury, represented by decreases in pulmonary hyper-permeability, pulmonary edema, pulmonary hypertension and neutrophilic sequestration. AZA attenuated IR-induced lung injury, associated with decreases in carbonic anhydrase expression and pCO2 levels, as well as restoration of Na-K-ATPase expression.


European Respiratory Journal | 2017

The Associations among Responses during Mechanical Ventilator Weaning and its Outcomes in Adult ICU: A Prospective Study

Yu-Ju Chen; Kun-Lun Huang; Ching-Yi Lee

Collaboration


Dive into the Kun-Lun Huang's collaboration.

Top Co-Authors

Avatar

Shu-Yu Wu

National Defense Medical Center

View shared research outputs
Top Co-Authors

Avatar

Chin-Pyng Wu

Tri-Service General Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shi-Jye Chu

National Defense Medical Center

View shared research outputs
Top Co-Authors

Avatar

Geng-Chin Wu

National Defense Medical Center

View shared research outputs
Top Co-Authors

Avatar

Shih-En Tang

National Defense Medical Center

View shared research outputs
Top Co-Authors

Avatar

Chung-Kan Peng

National Defense Medical Center

View shared research outputs
Top Co-Authors

Avatar

Min-Hui Li

National Defense Medical Center

View shared research outputs
Top Co-Authors

Avatar

Chia-Pi Cheng

National Defense Medical Center

View shared research outputs
Top Co-Authors

Avatar

Chia-Yu Chang

National Defense Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge