Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kunal Kumar is active.

Publication


Featured researches published by Kunal Kumar.


Journal of Medicinal Chemistry | 2011

Novel Trisubstituted Benzimidazoles, Targeting Mtb FtsZ, As A New Class of Antitubercular Agents

Kunal Kumar; Divya Awasthi; Seung-Yub Lee; Ilaria Zanardi; Bela Ruzsicska; Susan E. Knudson; Peter J. Tonge; Richard A. Slayden; Iwao Ojima

Libraries of novel trisubstituted benzimidazoles were created through rational drug design. A good number of these benzimidazoles exhibited promising MIC values in the range of 0.5-6 μg/mL (2-15 μM) for their antibacterial activity against Mtb H37Rv strain. Moreover, five of the lead compounds also exhibited excellent activity against clinical Mtb strains with different drug-resistance profiles. All lead compounds did not show appreciable cytotoxicity (IC(50) > 200 μM) against Vero cells, which inhibited Mtb FtsZ assembly in a dose dependent manner. The two lead compounds unexpectedly showed enhancement of the GTPase activity of Mtb FtsZ. The result strongly suggests that the increased GTPase activity destabilizes FtsZ assembly, leading to efficient inhibition of FtsZ polymerization and filament formation. The TEM and SEM analyses of Mtb FtsZ and Mtb cells, respectively, treated with a lead compound strongly suggest that lead benzimidazoles have a novel mechanism of action on the inhibition of Mtb FtsZ assembly and Z-ring formation.


Future Medicinal Chemistry | 2010

Discovery of anti-TB agents that target the cell-division protein FtsZ

Kunal Kumar; Divya Awasthi; William T. Berger; Peter J. Tonge; Richard A. Slayden; Iwao Ojima

The emergence of multidrug-resistant Mycobacterium tuberculosis strains has made many of the currently available anti-tuberculosis (TB) drugs ineffective. Accordingly, there is a pressing need to identify new drug targets. Filamentous temperature-sensitive protein Z (FtsZ), a bacterial tubulin homologue, is an essential cell-division protein that polymerizes in a GTP-dependent manner, forming a highly dynamic cytokinetic ring, designated as the Z ring, at the septum site. Other cell-division proteins are recruited to the Z ring and, upon resolution of the septum, two daughter cells are produced. Since inactivation of FtsZ or alteration of FtsZ assembly results in the inhibition of Z-ring and septum formation, FtsZ is a very promising target for novel antimicrobial drug development. This review describes the function and dynamic behaviors of FtsZ and the recent development of FtsZ inhibitors as potential anti-TB agents.


Expert Opinion on Therapeutic Patents | 2011

Therapeutic potential of FtsZ inhibition: a patent perspective

Divya Awasthi; Kunal Kumar; Iwao Ojima

Introduction: Filamentous temperature sensitive mutant Z (FtsZ), an essential protein for bacterial cell division, has emerged as an attractive therapeutic target for the development of efficacious antibacterial agents active against drug-sensitive and drug-resistant bacterial strains. Recently, FtsZ has garnered special attention in the antibacterial research field, which is evident by the amount of research papers and patents disclosed in the public domain. Because of the significance of FtsZ as a highly promising target for the development of novel antibacterial agents, it is timely to review the patents on this subject so far published to date. Areas covered: This review article covers the patent literature on FtsZ-targeting potential antibacterial agents up to November 2010, including their pharmacological findings. Expert opinion: Since FtsZ is well preserved in various bacteria, the FtsZ-targeting agents would act as novel broad-spectrum antibacterial drugs in addition to their use against particular bacteria, especially drug-resistant strains. Based on the increasing interest and advancement in this field of research, it looks almost certain that a good number of clinical candidates targeting FtsZ will emerge in the near future.


Bioorganic & Medicinal Chemistry | 2014

Drug Discovery Targeting Cell Division Proteins, Microtubules and FtsZ

Iwao Ojima; Kunal Kumar; Divya Awasthi; Jacob G. Vineberg

Eukaryotic cell division or cytokinesis has been a major target for anticancer drug discovery. After the huge success of paclitaxel and docetaxel, microtubule-stabilizing agents (MSAs) appear to have gained a premier status in the discovery of next-generation anticancer agents. However, the drug resistance caused by MDR, point mutations, and overexpression of tubulin subtypes, etc., is a serious issue associated with these agents. Accordingly, the discovery and development of new-generation MSAs that can obviate various drug resistances has a significant meaning. In sharp contrast, prokaryotic cell division has been largely unexploited for the discovery and development of antibacterial drugs. However, recent studies on the mechanism of bacterial cytokinesis revealed that the most abundant and highly conserved cell division protein, FtsZ, would be an excellent new target for the drug discovery of next-generation antibacterial agents that can circumvent drug-resistances to the commonly used drugs for tuberculosis, MRSA and other infections. This review describes an account of our research on these two fronts in drug discovery, targeting eukaryotic as well as prokaryotic cell division.


Journal of Medicinal Chemistry | 2013

SAR Studies on Trisubstituted Benzimidazoles as Inhibitors of Mtb FtsZ for the Development of Novel Antitubercular Agents

Divya Awasthi; Kunal Kumar; Susan E. Knudson; Richard A. Slayden; Iwao Ojima

FtsZ, an essential protein for bacterial cell division, is a highly promising therapeutic target, especially for the discovery and development of new-generation anti-TB agents. Following up the identification of two lead 2,5,6-trisubstituted benzimidazoles, 1 and 2, targeting Mtb-FtsZ in our previous study, an extensive SAR study for optimization of these lead compounds was performed through systematic modification of the 5 and 6 positions. This study has successfully led to the discovery of a highly potent advanced lead 5f (MIC = 0.06 μg/mL) and several other compounds with comparable potencies. These advanced lead compounds possess a dimethylamino group at the 6 position. The functional groups at the 5 position exhibit substantial effects on the antibacterial activity as well. In vitro experiments such as the FtsZ polymerization inhibitory assay and TEM analysis of Mtb-FtsZ treated with 5f and others indicate that Mtb-FtsZ is the molecular target for their antibacterial activity.


Bioorganic & Medicinal Chemistry | 2013

Benzimidazole-based antibacterial agents against Francisella tularensis.

Kunal Kumar; Divya Awasthi; Seung-Yub Lee; Jason E. Cummings; Susan E. Knudson; Richard A. Slayden; Iwao Ojima

Francisella tularensis is a highly virulent pathogenic bacterium. In order to identify novel potential antibacterial agents against F. tularensis, libraries of trisubstituted benzimidazoles were screened against F. tularensis LVS strain. In a preliminary screening assay, remarkably, 23 of 2,5,6- and 2,5,7-trisubstituted benzimidazoles showed excellent activity exhibiting greater than 90% growth inhibition at 1 μg/mL. Among those hits, 21 compounds showed MIC90 values in the range of 0.35-48.6 μg/mL after accurate MIC determination. In ex vivo efficacy assays, four of these compounds exhibited 2-3log reduction in colony forming units (CFU) per mL at concentrations of 10 and 50 μg/mL.


Bioorganic & Medicinal Chemistry | 2014

Design, synthesis and evaluation of novel 2,5,6-trisubstituted benzimidazoles targeting FtsZ as antitubercular agents.

Bora Park; Divya Awasthi; Soumya R. Chowdhury; Eduard Melief; Kunal Kumar; Susan E. Knudson; Richard A. Slayden; Iwao Ojima

Filamenting temperature-sensitive protein Z (FtsZ), an essential cell division protein, is a promising target for the drug discovery of new-generation antibacterial agents against various bacterial pathogens. As a part of SAR studies on benzimidazoles, we have synthesized a library of 376 novel 2,5,6-trisubstituted benzimidazoles, bearing ether or thioether linkage at the 6-position. In a preliminary HTP screening against Mtb H37Rv, 108 compounds were identified as hits at a cut off concentration of 5 μg/mL. Among those hits, 10 compounds exhibited MIC values in the range of 0.63-12.5 μg/mL. Light scattering assay and TEM analysis with the most potent compound 5a clearly indicate that its molecular target is Mtb-FtsZ. Also, the Kd of 5a with Mtb-FtsZ was determined to be 1.32 μM.


PLOS ONE | 2014

A trisubstituted benzimidazole cell division inhibitor with efficacy against Mycobacterium tuberculosis.

Susan E. Knudson; Divya Awasthi; Kunal Kumar; Alexandra Carreau; Laurent Goullieux; Sophie Lagrange; Hélèn Vermet; Iwao Ojima; Richard A. Slayden

Trisubstituted benzimidazoles have demonstrated potency against Gram-positive and Gram-negative bacterial pathogens. Previously, a library of novel trisubstituted benzimidazoles was constructed for high throughput screening, and compounds were identified that exhibited potency against M. tuberculosis H37Rv and clinical isolates, and were not toxic to Vero cells. A new series of 2-cyclohexyl-5-acylamino-6-N, N-dimethylaminobenzimidazoles derivatives has been developed based on SAR studies. Screening identified compounds with potency against M. tuberculosis. A lead compound from this series, SB-P17G-A20, was discovered to have an MIC of 0.16 µg/mL and demonstrated efficacy in the TB murine acute model of infection based on the reduction of bacterial load in the lungs and spleen by 1.73±0.24 Log10 CFU and 2.68±Log10 CFU, respectively, when delivered at 50 mg/kg by intraperitoneal injection (IP) twice daily (bid). The activity of SB-P17G-A20 was determined to be concentration dependent and to have excellent stability in mouse and human plasma, and liver microsomes. Together, these studies demonstrate that SB-P17G-A20 has potency against M. tuberculosis clinical strains with varying susceptibility and efficacy in animal models of infection, and that trisubstituted benzimidazoles continue to be a platform for the development of novel inhibitors with efficacy.


Journal of Antimicrobial Chemotherapy | 2015

Cell division inhibitors with efficacy equivalent to isoniazid in the acute murine Mycobacterium tuberculosis infection model

Susan E. Knudson; Divya Awasthi; Kunal Kumar; Alexandra Carreau; Laurent Goullieux; Sophie Lagrange; Hélène Vermet; Iwao Ojima; Richard A. Slayden

OBJECTIVES The increasing number of clinical strains resistant to one or more of the front-line TB drugs complicates the management of this disease. To develop next-generation benzimidazole-based FtsZ inhibitors with improved efficacy, we employed iterative optimization strategies based on whole bacteria potency, bactericidal activity, plasma and metabolic stability and in vivo efficacy studies. METHODS Candidate benzimidazoles were evaluated for potency against Mycobacterium tuberculosis H37Rv and select clinical strains, toxicity against Vero cells and compound stability in plasma and liver microsomes. The efficacy of lead compounds was assessed in the acute murine M. tuberculosis infection model via intraperitoneal and oral routes. RESULTS MICs of SB-P17G-A33, SB-P17G-A38 and SB-P17G-A42 for M. tuberculosis H37Rv and select clinical strains were 0.18-0.39 mg/L. SB-P17G-A38 and SB-P17G-A42 delivered at 50 mg/kg twice daily intraperitoneally or orally demonstrated efficacy in reducing the bacterial load by 5.7-6.3 log10 cfu in the lungs and 3.9-5.0 log10 cfu in the spleen. SB-P17G-A33 delivered at 50 mg/kg twice daily intraperitoneally or orally also reduced the bacterial load by 1.7-2.1 log10 cfu in the lungs and 2.5-3.4 log10 cfu in the spleen. CONCLUSIONS Next-generation benzimidazoles with excellent potency and efficacy against M. tuberculosis have been developed. This is the first report on benzimidazole-based FtsZ inhibitors showing an equivalent level of efficacy to isoniazid in an acute murine M. tuberculosis infection model.


Bioorganic & Medicinal Chemistry | 2015

Computer-aided identification, synthesis, and biological evaluation of novel inhibitors for botulinum neurotoxin serotype A.

Yu-Han Gary Teng; William T. Berger; Natasha M. Nesbitt; Kunal Kumar; Trent E. Balius; Robert C. Rizzo; Peter J. Tonge; Iwao Ojima; Subramanyam Swaminathan

Botulinum neurotoxins (BoNTs) are among the most potent biological toxin known to humans, and are classified as Category A bioterrorism agents by the Centers for Disease Control and prevention (CDC). There are seven known BoNT serotypes (A-G) which have been thus far identified in literature. BoNTs have been shown to block neurotransmitter release by cleaving proteins of the soluble NSF attachment protein receptor (SNARE) complex. Disruption of the SNARE complex precludes motor neuron failure which ultimately results in flaccid paralysis in humans and animals. Currently, there are no effective therapeutic treatments against the neurotoxin light chain (LC) after translocation into the cytosols of motor neurons. In this work, high-throughput in silico screening was employed to screen a library of commercially available compounds from ZINC database against BoNT/A-LC. Among the hit compounds from the in silico screening, two lead compounds were identified and found to have potent inhibitory activity against BoNT/A-LC in vitro, as well as in Neuro-2a cells. A few analogs of the lead compounds were synthesized and their potency examined. One of these analogs showed an enhanced activity than the lead compounds.

Collaboration


Dive into the Kunal Kumar's collaboration.

Top Co-Authors

Avatar

Iwao Ojima

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anushree Kamath

State University of New York System

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge