Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kunhong Xiao is active.

Publication


Featured researches published by Kunhong Xiao.


Journal of Biological Chemistry | 2006

β-Arrestin-dependent, G Protein-independent ERK1/2 Activation by the β2 Adrenergic Receptor

Sudha K. Shenoy; Matthew T. Drake; Christopher D. Nelson; Daniel A. Houtz; Kunhong Xiao; Srinivasan Madabushi; Eric Reiter; Richard T. Premont; Olivier Lichtarge; Robert J. Lefkowitz

Physiological effects of β adrenergic receptor (β2AR) stimulation have been classically shown to result from Gs-dependent adenylyl cyclase activation. Here we demonstrate a novel signaling mechanism wherein β-arrestins mediate β2AR signaling to extracellular-signal regulated kinases 1/2 (ERK 1/2) independent of G protein activation. Activation of ERK1/2 by the β2AR expressed in HEK-293 cells was resolved into two components dependent, respectively, on Gs-Gi/protein kinase A (PKA) or β-arrestins. G protein-dependent activity was rapid, peaking within 2-5 min, was quite transient, was blocked by pertussis toxin (Gi inhibitor) and H-89 (PKA inhibitor), and was insensitive to depletion of endogenous β-arrestins by siRNA. β-Arrestin-dependent activation was slower in onset (peak 5-10 min), less robust, but more sustained and showed little decrement over 30 min. It was insensitive to pertussis toxin and H-89 and sensitive to depletion of either β-arrestin1 or -2 by small interfering RNA. In Gs knock-out mouse embryonic fibroblasts, wild-type β2AR recruited β-arrestin2-green fluorescent protein and activated pertussis toxin-insensitive ERK1/2. Furthermore, a novel β2AR mutant (β2ART68F,Y132G,Y219A or β2ARTYY), rationally designed based on Evolutionary Trace analysis, was incapable of G protein activation but could recruit β-arrestins, undergo β-arrestin-dependent internalization, and activate β-arrestin-dependent ERK. Interestingly, overexpression of GRK5 or -6 increased mutant receptor phosphorylation and β-arrestin recruitment, led to the formation of stable receptor-β-arrestin complexes on endosomes, and increased agonist-stimulated phospho-ERK1/2. In contrast, GRK2, membrane translocation of which requires Gβγ release upon G protein activation, was ineffective unless it was constitutively targeted to the plasma membrane by a prenylation signal (CAAX). These findings demonstrate that the β2AR can signal to ERK via a GRK5/6-β-arrestin-dependent pathway, which is independent of G protein coupling.


Science Signaling | 2011

Distinct Phosphorylation Sites on the β2-Adrenergic Receptor Establish a Barcode That Encodes Differential Functions of β-Arrestin

Kelly N. Nobles; Kunhong Xiao; Seungkirl Ahn; Arun K. Shukla; Christopher M. Lam; Sudarshan Rajagopal; Ryan T. Strachan; Teng-Yi Huang; Erin A. Bressler; Makoto R. Hara; Sudha K. Shenoy; Steven P. Gygi; Robert J. Lefkowitz

Different patterns of GPCR phosphorylation produce distinct conformations of β-arrestin and specific downstream responses. Cracking a Phosphorylation Code Not only can ligands for G protein–coupled receptors (GPCRs) trigger signaling through two completely different pathways—G protein–mediated and β-arrestin–mediated—Nobles et al. report that phosphorylation of one of these receptors, the β2-adrenergic receptor, by isoform-specific GPCR kinases (GRKs) produces distinct phosphorylation patterns that influence β-arrestin conformation and induce distinct downstream responses. As noted in the Perspective by Liggett, GPCRs are the largest class of signaling proteins in the human genome and are common targets of clinically used therapeutic agents. Drugs that bias signaling down G protein–coupled pathways or the β-arrestin pathways already exist. That the β-arrestin pathways depend on the specific GRK-induced “barcode” triggered by receptor activation has implications for understanding the effects of existing drugs and the development of selective therapies targeting specific β-arrestin–mediated pathways. Phosphorylation of G protein–coupled receptors (GPCRs, which are also known as seven-transmembrane spanning receptors) by GPCR kinases (GRKs) plays essential roles in the regulation of receptor function by promoting interactions of the receptors with β-arrestins. These multifunctional adaptor proteins desensitize GPCRs, by reducing receptor coupling to G proteins and facilitating receptor internalization, and mediate GPCR signaling through β-arrestin–specific pathways. Detailed mapping of the phosphorylation sites on GPCRs targeted by individual GRKs and an understanding of how these sites regulate the specific functional consequences of β-arrestin engagement may aid in the discovery of therapeutic agents targeting individual β-arrestin functions. The β2-adrenergic receptor (β2AR) has many serine and threonine residues in the carboxyl-terminal tail and the intracellular loops, which are potential sites of phosphorylation. We monitored the phosphorylation of the β2AR at specific sites upon stimulation with an agonist that promotes signaling by both G protein–mediated and β-arrestin–mediated pathways or with a biased ligand that promotes signaling only through β-arrestin–mediated events in the presence of the full complement of GRKs or when either GRK2 or GRK6 was depleted. We correlated the specific and distinct patterns of receptor phosphorylation by individual GRKs with the functions of β-arrestins and propose that the distinct phosphorylation patterns established by different GRKs establish a “barcode” that imparts distinct conformations to the recruited β-arrestin, thus regulating its functional activities.


Trends in Biochemical Sciences | 2011

Emerging paradigms of β-arrestin-dependent seven transmembrane receptor signaling

Arun K. Shukla; Kunhong Xiao; Robert J. Lefkowitz

β-Arrestins, originally discovered to desensitize activated seven transmembrane receptors (7TMRs; also known as G-protein-coupled receptors, GPCRs), are now well established mediators of receptor endocytosis, ubiquitylation and G protein-independent signaling. Recent global analyses of β-arrestin interactions and β-arrestin-dependent phosphorylation events have uncovered several previously unanticipated roles of β-arrestins in a range of cellular signaling events. These findings strongly suggest that the functional roles of β-arrestins are much broader than currently understood. Biophysical studies aimed at understanding multiple active conformations of the 7TMRs and the β-arrestins have begun to unravel the mechanistic basis for the diverse functional capabilities of β-arrestins in cellular signaling.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Functional specialization of β-arrestin interactions revealed by proteomic analysis

Kunhong Xiao; Daniel B. McClatchy; Arun K. Shukla; Yang Zhao; Minyong Chen; Sudha K. Shenoy; John R. Yates; Robert J. Lefkowitz

β-arrestins are cytosolic proteins that form complexes with seven-transmembrane receptors after agonist stimulation and phosphorylation by the G protein-coupled receptor kinases. They play an essential role in receptor desensitization and endocytosis, and they also serve as receptor-regulated signaling scaffolds and adaptors. Moreover, in the past decade, a growing list of protein–protein interactions of β-arrestins pertinent to these functions has been documented. The discovery of several novel functions of β-arrestins stimulated us to perform a global proteomics analysis of β-arrestin-interacting proteins (interactome) as modulated by a model seven-transmembrane receptor, the angiotensin II type 1a receptor, in an attempt to assess the full range of functions of these versatile molecules. As determined by LC tandem MS, 71 proteins interacted with β-arrestin 1, 164 interacted with β-arrestin 2, and 102 interacted with both β-arrestins. Some proteins bound only after agonist stimulation, whereas others dissociated. Bioinformatics analysis of the data indicates that proteins involved in cellular signaling, organization, and nucleic acid binding are the most highly represented in the β-arrestin interactome. Surprisingly, both S-arrestin (visual arrestin) and X-arrestin (cone arrestin) were also found in heteromeric complex with β-arrestins. The β-arrestin interactors distribute not only in the cytoplasm, but also in the nucleus as well as other subcellular compartments. The binding of 16 randomly selected newly identified β-arrestin partners was validated by coimmunoprecipitation assays in HEK293 cells. This study provides a comprehensive analysis of proteins that bind β-arrestin isoforms and underscores their potentially broad regulatory roles in mammalian cellular physiology.


Nature | 2014

Visualization of arrestin recruitment by a G-protein-coupled receptor

Arun K. Shukla; Gerwin Westfield; Kunhong Xiao; Rosana I. Reis; Li Yin Huang; Jiang Qian; Sheng Li; Adi Blanc; Austin N. Oleskie; Anne M. Dosey; Min Su; Cui Rong Liang; Ling Ling Gu; Jin Ming Shan; Xin Chen; Rachel Hanna; Minjung Choi; Xiao Jie Yao; Bjoern U. Klink; Alem W. Kahsai; Sachdev S. Sidhu; Shohei Koide; Pawel A. Penczek; Anthony A. Kossiakoff; Virgil L. Woods; Brian K. Kobilka; Georgios Skiniotis; Robert J. Lefkowitz

G-protein-coupled receptors (GPCRs) are critically regulated by β-arrestins, which not only desensitize G-protein signalling but also initiate a G-protein-independent wave of signalling. A recent surge of structural data on a number of GPCRs, including the β2 adrenergic receptor (β2AR)–G-protein complex, has provided novel insights into the structural basis of receptor activation. However, complementary information has been lacking on the recruitment of β-arrestins to activated GPCRs, primarily owing to challenges in obtaining stable receptor–β-arrestin complexes for structural studies. Here we devised a strategy for forming and purifying a functional human β2AR–β-arrestin-1 complex that allowed us to visualize its architecture by single-particle negative-stain electron microscopy and to characterize the interactions between β2AR and β-arrestin 1 using hydrogen–deuterium exchange mass spectrometry (HDX-MS) and chemical crosslinking. Electron microscopy two-dimensional averages and three-dimensional reconstructions reveal bimodal binding of β-arrestin 1 to the β2AR, involving two separate sets of interactions, one with the phosphorylated carboxy terminus of the receptor and the other with its seven-transmembrane core. Areas of reduced HDX together with identification of crosslinked residues suggest engagement of the finger loop of β-arrestin 1 with the seven-transmembrane core of the receptor. In contrast, focal areas of raised HDX levels indicate regions of increased dynamics in both the N and C domains of β-arrestin 1 when coupled to the β2AR. A molecular model of the β2AR–β-arrestin signalling complex was made by docking activated β-arrestin 1 and β2AR crystal structures into the electron microscopy map densities with constraints provided by HDX-MS and crosslinking, allowing us to obtain valuable insights into the overall architecture of a receptor–arrestin complex. The dynamic and structural information presented here provides a framework for better understanding the basis of GPCR regulation by arrestins.


Science | 2008

β-Arrestin–Mediated Localization of Smoothened to the Primary Cilium

Jeffrey J. Kovacs; Erin J. Whalen; Renshui Liu; Kunhong Xiao; Jihee Kim; Minyong Chen; Jiangbo Wang; Wei Chen; Robert J. Lefkowitz

β-Arrestins have important roles in the regulation of seven-transmembrane receptors (7TMRs). Smoothened (Smo) is a 7TMR that mediates effects of Hedgehog on developmental processes and whose dysregulation may cause tumorigenesis. β-Arrestins are required for endocytosis of Smo and signaling to Gli transcription factors. In mammalian cells, Smo-dependent signaling requires translocation to primary cilia. We demonstrated that β-arrestins mediate the activity-dependent interaction of Smo and the kinesin motor protein Kif3A. This multimeric complex localized to primary cilia and was disrupted in cells transfected with β-arrestin small interfering RNA. β-Arrestin 1 or β-arrestin 2 depletion prevented the localization of Smo to primary cilia and the Smo-dependent activation of Gli. These results suggest roles for β-arrestins in mediating the intracellular transport of a 7TMR to its obligate subcellular location for signaling.


Nature | 2013

Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide

Arun K. Shukla; Aashish Manglik; Andrew C. Kruse; Kunhong Xiao; Rosana I. Reis; Wei Chou Tseng; Dean P. Staus; Daniel Hilger; Serdar Uysal; Li-Yin Huang; Marcin Paduch; Akiko Koide; Shohei Koide; William I. Weis; Anthony A. Kossiakoff; Brian K. Kobilka; Robert J. Lefkowitz

The functions of G-protein-coupled receptors (GPCRs) are primarily mediated and modulated by three families of proteins: the heterotrimeric G proteins, the G-protein-coupled receptor kinases (GRKs) and the arrestins. G proteins mediate activation of second-messenger-generating enzymes and other effectors, GRKs phosphorylate activated receptors, and arrestins subsequently bind phosphorylated receptors and cause receptor desensitization. Arrestins activated by interaction with phosphorylated receptors can also mediate G-protein-independent signalling by serving as adaptors to link receptors to numerous signalling pathways. Despite their central role in regulation and signalling of GPCRs, a structural understanding of β-arrestin activation and interaction with GPCRs is still lacking. Here we report the crystal structure of β-arrestin-1 (also called arrestin-2) in complex with a fully phosphorylated 29-amino-acid carboxy-terminal peptide derived from the human V2 vasopressin receptor (V2Rpp). This peptide has previously been shown to functionally and conformationally activate β-arrestin-1 (ref. 5). To capture this active conformation, we used a conformationally selective synthetic antibody fragment (Fab30) that recognizes the phosphopeptide-activated state of β-arrestin-1. The structure of the β-arrestin-1–V2Rpp–Fab30 complex shows marked conformational differences in β-arrestin-1 compared to its inactive conformation. These include rotation of the amino- and carboxy-terminal domains relative to each other, and a major reorientation of the ‘lariat loop’ implicated in maintaining the inactive state of β-arrestin-1. These results reveal, at high resolution, a receptor-interacting interface on β-arrestin, and they indicate a potentially general molecular mechanism for activation of these multifunctional signalling and regulatory proteins.


Nature | 2011

A stress response pathway regulates DNA damage through β2-adrenoreceptors and β-arrestin-1.

Makoto R. Hara; Jeffrey J. Kovacs; Erin J. Whalen; Sudarshan Rajagopal; Ryan T. Strachan; Wayne Grant; Aaron J. Towers; Barbara Williams; Christopher M. Lam; Kunhong Xiao; Sudha K. Shenoy; Simon G. Gregory; Seungkirl Ahn; Derek R. Duckett; Robert J. Lefkowitz

The human mind and body respond to stress, a state of perceived threat to homeostasis, by activating the sympathetic nervous system and secreting the catecholamines adrenaline and noradrenaline in the ‘fight-or-flight’ response. The stress response is generally transient because its accompanying effects (for example, immunosuppression, growth inhibition and enhanced catabolism) can be harmful in the long term. When chronic, the stress response can be associated with disease symptoms such as peptic ulcers or cardiovascular disorders, and epidemiological studies strongly indicate that chronic stress leads to DNA damage. This stress-induced DNA damage may promote ageing, tumorigenesis, neuropsychiatric conditions and miscarriages. However, the mechanisms by which these DNA-damage events occur in response to stress are unknown. The stress hormone adrenaline stimulates β2-adrenoreceptors that are expressed throughout the body, including in germline cells and zygotic embryos. Activated β2-adrenoreceptors promote Gs-protein-dependent activation of protein kinase A (PKA), followed by the recruitment of β-arrestins, which desensitize G-protein signalling and function as signal transducers in their own right. Here we elucidate a molecular mechanism by which β-adrenergic catecholamines, acting through both Gs–PKA and β-arrestin-mediated signalling pathways, trigger DNA damage and suppress p53 levels respectively, thus synergistically leading to the accumulation of DNA damage. In mice and in human cell lines, β-arrestin-1 (ARRB1), activated via β2-adrenoreceptors, facilitates AKT-mediated activation of MDM2 and also promotes MDM2 binding to, and degradation of, p53, by acting as a molecular scaffold. Catecholamine-induced DNA damage is abrogated in Arrb1-knockout (Arrb1−/−) mice, which show preserved p53 levels in both the thymus, an organ that responds prominently to acute or chronic stress, and in the testes, in which paternal stress may affect the offspring’s genome. Our results highlight the emerging role of ARRB1 as an E3-ligase adaptor in the nucleus, and reveal how DNA damage may accumulate in response to chronic stress.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Global phosphorylation analysis of β-arrestin–mediated signaling downstream of a seven transmembrane receptor (7TMR)

Kunhong Xiao; Jinpeng Sun; Jihee Kim; Sudarshan Rajagopal; Bo Zhai; Judit Villén; Wilhelm Haas; Jeffrey J. Kovacs; Arun K. Shukla; Makoto R. Hara; Marylens Hernandez; Alexander Lachmann; Shan Zhao; Yuan Lin; Yishan Cheng; Kensaku Mizuno; Avi Ma'ayan; Steven P. Gygi; Robert J. Lefkowitz

β-Arrestin–mediated signaling downstream of seven transmembrane receptors (7TMRs) is a relatively new paradigm for signaling by these receptors. We examined changes in protein phosphorylation occurring when HEK293 cells expressing the angiotensin II type 1A receptor (AT1aR) were stimulated with the β-arrestin–biased ligand Sar1, Ile4, Ile8-angiotensin (SII), a ligand previously found to signal through β-arrestin–dependent, G protein-independent mechanisms. Using a phospho-antibody array containing 46 antibodies against signaling molecules, we found that phosphorylation of 35 proteins increased upon SII stimulation. These SII-mediated phosphorylation events were abrogated after depletion of β-arrestin 2 through siRNA-mediated knockdown. We also performed an MS-based quantitative phosphoproteome analysis after SII stimulation using a strategy of stable isotope labeling of amino acids in cell culture (SILAC). We identified 1,555 phosphoproteins (4,552 unique phosphopeptides), of which 171 proteins (222 phosphopeptides) showed increased phosphorylation, and 53 (66 phosphopeptides) showed decreased phosphorylation upon SII stimulation of the AT1aR. This study identified 38 protein kinases and three phosphatases whose phosphorylation status changed upon SII treatment. Using computational approaches, we performed system-based analyses examining the β-arrestin–mediated phosphoproteome including construction of a kinase-substrate network for β-arrestin–mediated AT1aR signaling. Our analysis demonstrates that β-arrestin–dependent signaling processes are more diverse than previously appreciated. Notably, our analysis identifies an AT1aR-mediated cytoskeletal reorganization network whereby β-arrestin regulates phosphorylation of several key proteins, including cofilin and slingshot. This study provides a system-based view of β-arrestin–mediated phosphorylation events downstream of a 7TMR and opens avenues for research in a rapidly evolving area of 7TMR signaling.


Journal of Biological Chemistry | 2008

Nedd4 Mediates Agonist-dependent Ubiquitination, Lysosomal Targeting, and Degradation of the β2-Adrenergic Receptor

Sudha K. Shenoy; Kunhong Xiao; Vidya Venkataramanan; Peter M. Snyder; Neil J. Freedman; Allan M. Weissman

Agonist-stimulated β2-adrenergic receptor (β2AR) ubiquitination is a major factor that governs both lysosomal trafficking and degradation of internalized receptors, but the identity of the E3 ubiquitin ligase regulating this process was unknown. Among the various catalytically inactive E3 ubiquitin ligase mutants that we tested, a dominant negative Nedd4 specifically inhibited isoproterenol-induced ubiquitination and degradation of the β2AR in HEK-293 cells. Moreover, siRNA that down-regulates Nedd4 expression inhibited β2AR ubiquitination and lysosomal degradation, whereas siRNA targeting the closely related E3 ligases Nedd4-2 or AIP4 did not. Interestingly, β2AR as well as β-arrestin2, the endocytic and signaling adaptor for the β2AR, interact robustly with Nedd4 upon agonist stimulation. However, β2AR-Nedd4 interaction is ablated when β-arrestin2 expression is knocked down by siRNA transfection, implicating an essential E3 ubiquitin ligase adaptor role for β-arrestin2 in mediating β2AR ubiquitination. Notably, β-arrestin2 interacts with two different E3 ubiquitin ligases, namely, Mdm2 and Nedd4 to regulate distinct steps in β2AR trafficking. Collectively, our findings indicate that the degradative fate of the β2AR in the lysosomal compartments is dependent upon β-arrestin2-mediated recruitment of Nedd4 to the activated receptor and Nedd4-catalyzed ubiquitination.

Collaboration


Dive into the Kunhong Xiao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge