Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kunhui Liu is active.

Publication


Featured researches published by Kunhui Liu.


Journal of the American Chemical Society | 2015

Direct Observation of Guanine Radical Cation Deprotonation in G-Quadruplex DNA

Lidan Wu; Kunhui Liu; Jialong Jie; Di Song; Hongmei Su

Although numerous studies have been devoted to the charge transfer through double-stranded DNA (dsDNA), one of the major problems that hinder their potential applications in molecular electronics is the fast deprotonation of guanine cation (G(+•)) to form a neutral radical that can cause the termination of hole transfer. It is thus of critical importance to explore other DNA structures, among which G-quadruplexes are an emerging topic. By nanosecond laser flash photolysis, we report here the direct observation and findings of the unusual deprotonation behavior (loss of amino proton N2-H instead of imino proton N1-H) and slower (1-2 orders of magnitude) deprotonation rate of G(+•) within G-quadruplexes, compared to the case in the free base dG or dsDNA. Four G-quadruplexes AG3(T2AG3)3, (G4T4G4)2, (TG4T)4, and G2T2G2TGTG2T2G2 (TBA) are measured systematically to examine the relationship of deprotonation with the hydrogen-bonding surroundings. Combined with in depth kinetic isotope experiments and pKa analysis, mechanistic insights have been further achieved, showing that it should be the non-hydrogen-bonded free proton to be released during deprotonation in G-quadruplexes, which is the N2-H exposed to solvent for G bases in G-quartets or the free N1-H for G base in the loop. The slower N2-H deprotonation rate can thus ensure less interruption of the hole transfer. The unique deprotonation features observed here for G-quadruplexes open possibilities for their interesting applications as molecular electronic devices, while the elucidated mechanisms can provide illuminations for the rational design of G-quadruplex structures toward such applications and enrich the fundamental understandings of DNA radical chemistry.


Neurosignals | 1995

Hormonal Regulation of Plasminogen Activator in Rat and Mouse Seminiferous Epithelium

Yang Liu; Q. Du; Kunhui Liu; G.Q. Fu

To elucidate the possible role of plasminogen activator (PA) in spermatogenesis and spermiation in mammals, we studied the hormonal regulation of PA secretion in cultured rat and mouse seminiferous tubules during defined stages of spermatogenesis. Results indicated that: (1) under basal conditions, segments of rat seminiferous tubules released primarily urokinase-type PA (uPA) at all stages of the cycle. The highest level of PA secretion occurred at stages VIIab, VIIcd and VIII. FSH, 8-bromo cyclic AMP and forskolin (FK) stimulated PA secretion, predominantly tissue-type PA (tPA). (2) In contrast, mouse seminiferous tubules secreted only tPA under basal conditions. In the presence of 50 microM MIX, seminiferous tubules at stages VII and VIII secreted higher levels of both types of PA than at the other stages. Both tPA and uPA secretion was enhanced by addition of FSH and FK to the organ culture media. (3) Segments of both rat and mouse seminiferous tubules at stages IX-XII in which the sperm residual bodies are absorbed into the Sertoli cells were also very sensitive to the addition of FSH to the organ culture. These results suggest that tPA in rat and mouse testes may play an essential role in the process of spermatogenesis and spermiation as well as in sperm residual body absorption.


Journal of Physical Chemistry B | 2014

Photophysical and Photochemical Properties of 4-Thiouracil: Time-Resolved IR Spectroscopy and DFT Studies

Xiaoran Zou; Xiaojuan Dai; Kunhui Liu; Hongmei Zhao; Di Song; Hongmei Su

Intensified research interests are posed with the thionucleobase 4-thiouracil (4-TU), due to its important biological function as site-specific photoprobe to detect RNA structures and nucleic acid-nucleic acid contacts. By means of time-resolved IR spectroscopy and density functional theory (DFT) studies, we have examined the unique photophysical and photochemical properties of 4-TU. It is shown that 4-TU absorbs UVA light and results in the triplet formation with a high quantum yield (0.9). Under N2-saturated anaerobic conditions, the reactive triplet undergoes mainly cross-linking, leading to the (5-4)/(6-4) pyrimidine-pyrimidone product. In the presence of O2 under aerobic conditions, the triplet 4-TU acts as an energy donor to produce singlet oxygen (1)O2 by triplet-triplet energy transfer. The highly reactive oxygen species (1)O2 then reacts readily with 4-TU, leading to the products of uracil (U) with a yield of 0.2 and uracil-6-sulfonate (U(SO3)) that is fluorescent at ~390 nm. The product formation pathways and product distribution are well rationalized by the joint B3LYP/6-311+G(d,p) calculations. From dynamics and mechanistic point of views, these results enable a further understanding for 4-TU acting as reactive precursors for photochemical reactions relevant to (1)O2, which has profound implications for photo cross-linking, DNA photodamage, as well as photodynamic therapy studies.


Journal of Physical Chemistry A | 2009

Reaction Mechanisms of a Photo-Induced [1,3] Sigmatropic Rearrangement via a Nonadiabatic Pathway

Weiqiang Wu; Kunhui Liu; Chunfan Yang; Hongmei Zhao; Huan Wang; Youqing Yu; Hongmei Su

Time-resolved Fourier transform infrared absorption spectroscopy measurements and B3LYP/cc-pVDZ calculations have been conducted to characterize the reaction dynamics of a remarkable photoinduced 1,3-Cl sigmatropic rearrangement reaction upon 193 or 266 nm excitation of the model systems acryloyl chloride (CH(2)CHCOCl) and crotonyl chloride (CH(3)CHCHCOCl) in solution. The reaction is elucidated to follow nonadiabatic pathways via two rapid ISC processes, S(1) --> T(1) and T(1) --> S(0), and the S(1)/T(1) and T(1)/S(0) surface intersections are found to play significant roles leading to the nonadiabatic pathways. The S(1) --> T(1) --> S(0) reaction pathway involving the key participation of the T(1) state is the most favorable, corresponding to the lowest energy path. It is also suggested that the photoinduced 1,3-Cl migration reaction of RCHCHCOCl (R = H, CH(3)) proceeds through a stepwise mechanism involving radical dissociation-recombination, which is quite different from the generally assumed one-step concerted process for pericyclic reactions.


Journal of Physical Chemistry A | 2009

Adiabatic and nonadiabatic reaction pathways of the O(3P) with propyne.

Shaolei Zhao; Weiqiang Wu; Hongmei Zhao; Huan Wang; Chunfan Yang; Kunhui Liu; Hongmei Su

For the reaction of O((3)P) with propyne, the product channels and mechanisms are investigated both theoretically and experimentally. Theoretically, the CCSD(T)//B3LYP/6-311G(d,p) level of calculations are performed for both the triplet and singlet potential energy surfaces and the minimum energy crossing point between the two surfaces are located with the Newton-Lagrange method. The theoretical calculations show that the reaction occurs dominantly via the O-addition rather than the H-abstraction mechanism. The reaction starts with the O-addition to either of the triple bond carbon atoms forming triplet ketocarbene (3)CH(3)CCHO or (3)CH(3)COCH which can undergo decomposition, H-atom migration or intersystem crossing from which a variety of channels are open, including the adiabatic channels of CH(3)CCO + H (CH(2)CCHO + H), CH(3) + HCCO, CH(2)CH + HCO, CH(2)CO + CH(2), CH(3)CH + CO, and the nonadiabatic channels of C(2)H(4) + CO, C(2)H(2) + H(2) + CO, H(2) + H(2)CCCO. Experimentally, the CO channel is investigated with TR-FTIR emission spectroscopy. A complete detection of the CO product at each vibrationally excited level up to v = 5 is fulfilled, from which the vibrational energy disposal of CO is determined and found to consist with the statistical partition of the singlet C(2)H(4) + CO channel, but not with the triplet CH(3)CH + CO channel. In combination with the present calculation results, it is concluded that CO arises mainly from the singlet methylketene ((1)CH(3)CHCO) dissociation following the intersystem crossing of the triplet ketocarbene adduct ((3)CH(3)CCHO). Fast intersystem crossing via the minimum energy crossing point of the triplet and singlet surfaces is shown to play significant roles resulting into nonadiabatic pathways for this reaction. Moreover, other interesting questions are explored as to the site selectivity of O((3)P) atom being added to which carbon atom of the triple bond and different types of internal H-atom migrations including 1,2-H shift, 3,2-H shift, and 3,1-H shift involved in the reaction.


Journal of Physical Chemistry A | 2011

[2+2] Photocycloaddition Reaction Dynamics of Triplet Pyrimidines

Chunfan Yang; Youqing Yu; Kunhui Liu; Di Song; Lidan Wu; Hongmei Su

Taking the 266 nm excited pyrimidine (uracil or thymine) with cyclopentene as model reaction systems, we have examined the photoproduct formation dynamics from the [2 + 2] photocycloaddition reactions of triplet pyrimidines in solution and provided mechanistic insights into this important DNA photodamage reaction. By combining two compliment methods of nanosecond time-resolved transient IR and UV-vis laser flash-photolysis spectroscopy, the photoproduct formation dynamics as well as the triplet quenching kinetics are measured. Characteristic IR absorption bands due to photoproduct formation have been observed and product quantum yields are determined to be ∼0.91% for uracil and ∼0.41% for thymine. Compared to the measured large quenching rate constants of triplet uracil (1.5 × 10(9) M(-1)s(-1)) or thymine (0.6 × 10(9) M(-1)s(-1)) by cyclopentene, the inefficiency in formation of photoproducts indicates competitive physical quenching processes may exist on the route leading to photoproducts, resulting in very small product yields eventually. Such an energy wasting process is found to be resulted from T(1)/S(0) surface crossings by the hybrid density functional calculations, which compliments the experiments and reveals the reaction mechanism.


Journal of Chemical Physics | 2010

Photodissociation and photoisomerization dynamics of CH2 = CHCHO in solution

Weiqiang Wu; Chunfan Yang; Hongmei Zhao; Kunhui Liu; Hongmei Su

By means of time-resolved Fourier transform infrared absorption spectroscopy, we have investigated the 193 nm photodissociation and photoisomerization dynamics of the prototype molecule of alpha,beta-enones, acrolein (CH(2)=CHCHO) in CH(3)CN solution. The primary photolysis channels and absolute branching ratios are determined. The most probable reaction mechanisms are clarified by control experiments monitoring the product yields varied with the triplet quencher addition. The predominant channel is the 1,3-H migration yielding the rearrangement product CH(3)CH=C=O with a branching ratio of 0.78 and the less important channel is the alpha cleavage of C-H bond yielding radical fragments CH(2)=CHCO+H with a branching ratio of only 0.12. The 1,3-H migration is strongly suggested to correlate with the triplet (3)(pipi*) state rather than the ground S(0) state and the alpha cleavage of C-H bond is more likely to proceed in the singlet S(1) (1)(npi*) state. From the solution experiments we have not only acquired clues clarifying the previous controversial mechanisms, but also explored different photochemistry in solution. Compared to the gas phase photolysis which is dominated by photodissociation channels, the most important channel in solution is the photoisomerization of 1,3-H migration. The reason leading to the different photochemistry in solution is further ascribed to the solvent cage effect.


Chemistry-an Asian Journal | 2017

Porphyrin Bound to i-motifs: Intercalation versus External Groove Binding

Tingxiao Qin; Kunhui Liu; Di Song; Chunfan Yang; Hongmei Su

G-rich and C-rich DNA can fold into the tetrastranded helical structures G quadruplex or C quadruplex (i-motif), which are considered to be specific drug targets for cancer therapy. A large number of small molecules (so-called ligands), which can bind and modulate the stability of G quadruplex structures, have been widely examined. Much less is known, however, about the ligand binding interactions with the C quadruplex (i-motif). By combining steady-state measurements (UV/Vis, fluorescence, and induced circular dichroism (ICD)) with time-resolved laser flash photolysis spectroscopy, we have studied the binding interactions of cationic porphyrin (5,10,15,20-tetrakis(N-methylpyridinium-4-yl)-21 H,23 H-porphyrin, abbreviated as TMPyP4) with i-motifs (C3 TA2 )3 C3 T and (C4 A4 C4 )2. The intercalation binding mode through π-π stacking of the porphyrin macrocycle and the C:C+ hemiprotonated base pair has been identified for the first time. The coexistent binding modes of intercalation (≈80 %) versus external major-groove binding (≈20 %) have been determined quantitatively, thereby allowing a fuller understanding of the porphyrin-i-motif interactions. The ionic strength was found to play an important role in affecting affects the binding modes, with the progressive increase in the ionic strength resulting in the gradual decrease in the intercalation percentage and an increase in the groove-binding percentage. Furthermore, an extended study of the porphyrin derivative with four bulky side-arm substituents (T4) suggests a complete prohibition of the intercalation mode owing to large steric hindrance, thereby providing a novel groove-binding ligand with site selectivity. These results provide in-depth mechanistic insights to better understand the ligand interactions with i-motifs and guidance for related applications in anticancer drug design.


Journal of Physical Chemistry Letters | 2014

Explicit Differentiation of G-Quadruplex/Ligand Interactions: Triplet Excited States as Sensitive Reporters

Di Song; Wen Yang; Tingxiao Qin; Lidan Wu; Kunhui Liu; Hongmei Su

We report a new transient spectral method utilizing triplet excited state as sensitive reporters to monitor and differentiate the multiplex G-quadruplex/ligand interactions in a single assay, which is a difficult task and usually requires a combination of several techniques. From a systematic study on the interactions of porphyrin (TMPyP4) with each telomeric G-quadruplex: AG3(T2AG3)3, G2T2G2TGTG2T2G2, (G4T4G4)2, and (TG4T)4, it is convincingly shown that the ligand triplet decay lifetimes are sensitive to the local bound microenvironment within G-quadruplexes, from which the coexisting binding modes of end-stacking, intercalation, and sandwich are distinguished and their respective contribution are determined. The complete scenario of mixed interaction modes is thus revealed, shedding light on the past controversial issues. Additional control experiments demonstrate the sensitivity of this triplet reporter method, which can even capture the binding behavior change as the G-quadruplex structures are adjusted by Na(+) or K(+).


Chinese Journal of Chemical Physics | 2011

Photochemical Hydrogen Abstraction and Electron Transfer Reactions of Tetrachlorobenzoquinone with Pyrimidine Nucleobases

Kunhui Liu; Lidan Wu; Xiaoran Zou; Wen Yang; Qian Du; Hongmei Su

Pentachlorophenol, a widespread environmental pollutant that is possibly carcinogenic to humans, is metabolically oxidized to tetrachloroquinone (TCBQ) which can result in DNA damage. We have investigated the photochemical reaction dynamics of TCBQ with two pyrimidine type nucleobases (thymine and uracil) upon UVA (355 nm) excitation using the technique of nanosecond time-resolved laser flash photolysis. It has been found that 355 nm excitation populates TCBQ molecules to their triplet state 3TCBQ*, which are highly reactive towards thymine or uracil and undergo two parallel reactions, the hydrogen abstraction and electron transfer, leading to the observed photoproducts of TCBQH· and TCBQ·− in transient absorption spectra. The concomitantly produced nucleobase radicals and radical cations are expected to induce a series of oxidative or strand cleavage damage to DNA afterwards. By characterizing the photochemical hydrogen abstraction and electron transfer reactions, our results provide potentially important molecular reaction mechanisms for understanding the carcinogenic effects of pentachlorophenol and its metabolites TCBQ.

Collaboration


Dive into the Kunhui Liu's collaboration.

Top Co-Authors

Avatar

Hongmei Su

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Di Song

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hongmei Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chunfan Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lidan Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Weiqiang Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Youqing Yu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Huan Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shaolei Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jialong Jie

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge