Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kuniyo Inouye is active.

Publication


Featured researches published by Kuniyo Inouye.


Frontiers in Bioscience | 2018

Metabolism of vitamin D3 by cytochromes P450.

Toshiyuki Sakaki; Norio Kagawa; Keiko Yamamoto; Kuniyo Inouye

Human genome project unveiled that only 1.5.-2.0.% of the genome is protein coding. ENCODE and related studies showed that most part of the genome transcribed into RNAs, and most of them do not code for a functional proteins, hence the name non-coding RNAs (ncRNAs). ncRNAs are small ncRNAs (less than 200 nucleotides) and long ncRNAs (longer than 200 nucleotides up to 10 kb). They act as a direct link between highly ordered chromosome structures, gene expression and serve as a bridge between genome and chromatin modification complexes as guides, scaffolds, and decoys. Highly regulated hematopoietic differentiation is required for formation of all types of blood cells. Among a variety of lncRNAs only few hematopoitic lncRNAs have been studied extensivelyand most of them are not functionally characterized. The role of these lncRNAs remains partially undetermined but their involvement in the regulation of various genes and protein synthesis has been proved even in hematopoiesis. So, the present review is a mere effort to highlight the role of lncRNAs involved in the development and regulation of hematopoiesis.


Journal of Agricultural and Food Chemistry | 2009

Kinetic Analysis and Mechanism on the Inhibition of Chlorogenic Acid and Its Components against Porcine Pancreas α-Amylase Isozymes I and II

Yusaku Narita; Kuniyo Inouye

Chlorogenic acid (5-caffeoylquinic acid, 5-CQA) is a kind of polyphenol and is richly included in green coffee beans. The inhibitory effects of 5-CQA and its components, caffeic acid (CA) and quinic acid (QA), on the two porcine pancreas alpha-amylase (PPA) isozymes, PPA-I and PPA-II, were investigated using p-nitrophenyl-alpha-D-maltoside as substrate at pH 6.9 and 30 degrees C. The inhibition potencies of the respective inhibitors against both PPA isozymes were almost the same and in the order of 5-CQA > CA >> QA. Their IC(50) values were 0.07-0.08 mM, 0.37-0.40 mM, and 25.3-26.5 mM, respectively. The inhibition mechanisms of 5-CQA and CA were investigated by kinetic analyses, and the inhibitor constants K(i) and K(i) (for the free enzyme and enzyme-substrate complex, respectively) were determined. It was indicated that 5-CQA and CA showed mixed-type inhibition with K(i) > K(i) against both PPA-I and PPA-II. The binding of PPA-I or PPA-II with 5-CQA or CA was all exothermic and enthalpy-driven. QA is a poor inhibitor, and its inhibitory mode was unique and hardly analyzed by a simple Michaelis-Menten-type interaction between the enzyme and inhibitor. However, it was shown that the inhibitory activity of CA was enhanced 5 times by ester-bond formation with QA in the form of 5-CQA. These results provide us with significant hints for the development of alpha-amylase inhibitors useful for the prevention of diabetes and obesity.


Journal of Biological Chemistry | 2008

Roles of functional and structural domains of hepatocyte growth factor activator inhibitor type 1 in the inhibition of matriptase

Kenji Kojima; Satoshi Tsuzuki; Tohru Fushiki; Kuniyo Inouye

Hepatocyte growth factor activator inhibitor type 1 (HAI-1) is a membrane-bound, Kunitz-type serine protease inhibitor. HAI-1 inhibits serine proteases that have potent pro-hepatocyte growth factor-converting activity, such as the membrane-type serine protease, matriptase. HAI-1 comprises an N-terminal domain, followed by an internal domain, first protease inhibitory domain (Kunitz domain I), low-density lipoprotein receptor A module (LDLRA) domain, and a second Kunitz domain (Kunitz domain II) in the extracellular region. Our aim was to assess the roles of these domains in the inhibition of matriptase. Soluble forms of recombinant rat HAI-1 mutants made up with various combinations of domains were produced, and their inhibitory activities toward the hydrolysis of a chromogenic substrate were analyzed using a soluble recombinant rat matriptase. Kunitz domain I exhibited inhibitory activity against matriptase, but Kunitz domain II did not. The N-terminal domain and Kunitz domain II decreased the association rate between Kunitz domain I and matriptase, whereas the internal domain increased this rate. The LDLRA domain suppressed the dissociation of the Kunitz domain I-matriptase complex. Surprisingly, an HAI-1 mutant lacking the N-terminal domain and Kunitz domain II showed an inhibitor constant of 1.6 pm, and the inhibitory activity was 400 times higher in this HAI-1 mutant than in the mutant with all domains. These findings, together with the known occurrence of an HAI-1 species lacking the N-terminal domain and Kunitz domain II in vivo, suggest that the domain structure of HAI-1 is organized in a way that allows HAI-1 to flexibly control matriptase activity.


Comparative Biochemistry and Physiology B | 2008

Purification and characterization of novel raw-starch-digesting and cold-adapted α-amylases from Eisenia foetida

Mitsuhiro Ueda; Tomohiko Asano; Masami Nakazawa; Kazutaka Miyatake; Kuniyo Inouye

Novel raw-starch-digesting and cold-adapted alpha-amylases (Amy I and Amy II) from the earthworm Eisenia foetida were purified to electrophoretically homogeneous states. The molecular weights of both purified enzymes were estimated to be 60,000 by SDS-PAGE. The enzymes were most active at pH 5.5 and 50 degrees C and stable at pH 7.0-9.0 and 50-60 degrees C. Both Amy I and II exhibited activities at 10 degrees C. The enzymes were inhibited by metal ions Cu(2+), Fe(2+), and Hg(2+), and hydrolyzed raw starch into glucose, maltose and maltotriose as end products.


Molecular Pharmacology | 2006

Structure-function analysis of vitamin D 24-hydroxylase (CYP24A1) by site-directed mutagenesis: amino acid residues responsible for species-based difference of CYP24A1 between humans and rats.

Hiromi Hamamoto; Tatsuya Kusudo; Naoko Urushino; Hiroyuki Masuno; Keiko Yamamoto; Sachiko Yamada; Masaki Kamakura; Miho Ohta; Kuniyo Inouye; Toshiyuki Sakaki

Our previous studies revealed the species-based difference of CYP24A1-dependent vitamin D metabolism. Although human CYP24A1 catalyzes both C-23 and C-24 oxidation pathways, rat CYP24A1 shows almost no C-23 oxidation pathway. We tried to identify amino acid residues that cause the species-based difference by site-directed mutagenesis. In the putative substrate-binding regions, amino acid residue of rat CYP24A1 was converted to the corresponding residue of human CYP24A1. Among eight mutants examined, T416M and I500T showed C-23 oxidation pathway. In addition, the mutant I500F showed quite a different metabolism of 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] from both human and rat CYP24A1. These results strongly suggest that the amino acid residues at positions 416 and 500 play a crucial role in substrate binding and greatly affect substrate orientation. A three-dimensional model of CYP24A1 indicated that the A-ring and triene part of 1α,25(OH)2D3 could be located close to amino acid residues at positions 416 and 500, respectively. Our findings provide useful information for the development of new vitamin D analogs for clinical use.


Biotechnology Annual Review | 2007

Engineering, expression, purification, and production of recombinant thermolysin

Kuniyo Inouye; Masayuki Kusano; Yasuhiko Hashida; Masashi Minoda; Kiyoshi Yasukawa

Thermolysin [EC 3.4.24.27] is a thermostable neutral zinc metalloproteinase originally identified in the culture broth of Bacillus thermoproteolyticus Rokko. Since the discovery in 1962, the enzyme has been extensively studied regarding its structure and catalytic mechanism. Today, thermolysin is a representative of zinc metalloproteinase and an attractive target in protein engineering to understand the catalytic mechanism, thermostability, and halophilicity. Thermolysin is used in industry, especially for the enzymatic synthesis of N-carbobenzoxy L-Asp-L-Phe methyl ester (ZDFM), a precursor of an artificial sweetener, aspartame. Generation of genetically engineered thermolysin with higher activity in the synthesis of ZDFM has been highly desired. In accordance with the expansion of studies on thermolysin, various strategies for its expression and purification have been devised and successfully used. In this review, we aim to outline recombinant thermolysins associated with their engineering, expression, purification, and production.


Journal of Biochemistry | 2010

The optimal activity of a pseudozymogen form of recombinant matriptase under the mildly acidic pH and low ionic strength conditions

Kuniyo Inouye; Makoto Yasumoto; Satoshi Tsuzuki; Seiya Mochida; Tohru Fushiki

Matriptase is a transmembrane serine protease that is strongly expressed in epithelial cells. The single-chain zymogen of matriptase is considered to have inherent activity, leading to its own activation (i.e. conversion to the disulphide-linked-two-chain form by cleavage after Thr-Lys-Gln-Ala-Arg614). Also, there is growing evidence that the activation of zymogen occurs at the cell surface and in relation to the acidification and lowering of ionic strength within cell-surface microenvironments. The present study aimed to provide evidence for the involvement of zymogen activity in its activation in physiologically relevant cellular contexts. For this purpose, the activity of a pseudozymogen form of recombinant matriptase (HL-matriptase zymogen) was examined using acetyl-l-Lys-l-Thr-l-Lys-l-Gln-l-Leu-l-Arg-4-methyl-coumaryl-7-amide as a substrate. HL-matriptase zymogen exhibited optimal activity toward the substrate pH approximately 6.0. The substrate hydrolysis at the pH value was hardly detected when NaCl was present at a concentration of 145 mM. In a buffer of pH 6.0 containing 5 mM NaCl, the activity of HL-matriptase zymogen was only approximately 30-times lower than that of the respective two-chain form. These findings suggest that the in vivo activation of matriptase zymogen occurs via a mechanism involving the zymogen activity.


Journal of Biotechnology | 2010

Effects of the mutational combinations on the activity and stability of thermolysin

Masayuki Kusano; Kiyoshi Yasukawa; Kuniyo Inouye

We have previously indicated that three single mutations (Leu144-->Ser, Asp150-->Glu, and Ile168-->Ala) in the site-directed mutagenesis of thermolysin increase the activity and two single (Ser53-->Asp and Leu155-->Ala) and one triple (Gly8-->Cys/Asn60-->Cys/Ser65-->Pro) mutations increase the stability. In the present study, aiming to generate highly active and stable thermolysin variants, we combined these mutations and analyzed the effect of combinations on the activity and stability of thermolysin. The combination of the mutations of Leu144-->Ser and Asp150-->Glu yielded the most significant increase in the hydrolytic activities for N-[3-(2-furyl)acryloyl]-Gly-L-Leu amide (FAGLA) and N-carbobenzoxy-L-Asp-L-Phe methyl ester (ZDFM), while that of Leu144-->Ser and Ile168-->Ala abolished the activity. The combination of Ser53-->Asp and Leu155-->Ala yielded the greatest increase in the thermal stability, while that of Ser53-->Asp and Gly8-->Cys/Asn60-->Cys/Ser65-->Pro increased the stability as high as the individual mutations do. The combination of three mutations of Leu144-->Ser, Asp150-->Glu, and Ser53-->Asp yielded a variant L144S/D150E/S53D with improved activity and stability. Its k(cat)/K(m) values in the hydrolysis of FAGLA and ZDFM were 8.6 and 10.2 times higher than those of wild-type thermolysin (WT), respectively, and its rate constant for thermal inactivation at 80 degrees C was 60% of that of WT.


Journal of Biochemistry | 2009

Activation of a membrane-bound serine protease matriptase on the cell surface.

Makoto Yasumoto; Satoshi Tsuzuki; Tohru Fushiki; Kuniyo Inouye

Matriptase is a type II transmembrane serine protease. The activation (i.e. conversion of the single-chain pro-form to the disulphide-linked-two-chain active form) of this enzyme is known to occur via a mechanism requiring its catalytic triad. We reported previously that the activated enzyme was produced in the conditioned medium when full-length rat matriptase was expressed in monkey kidney COS-1 cells. The present study aimed to address when and where the matriptase activation occurs. COS-1 cells expressing matriptase were labelled with a membrane-impermeable biotin derivative and then solubilized with Triton. Both activated and non-activated matriptase molecules were detected in the avidin precipitants of Triton extracts, whereas only the non-activated molecules were detected in the flow-through fraction of avidin-precipitation procedure. Single-chain matriptase has been thought to have an inherent activity. Indeed, a secreted single-chain variant of recombinant matriptase bearing mutation at the activation-cleavage site was found to exhibit the activity in hydrolyzing a synthetic peptide substrate at pH 7.5. However, the variant had little activity at pH 5.5, as found in the lumen of post-Golgi secretory vesicles. Altogether, it is concluded that the activation of matriptase may occur when the enzyme reaches the cell surface.


Biochimica et Biophysica Acta | 2008

Effects of introducing negative charges into the molecular surface of thermolysin by site-directed mutagenesis on its activity and stability

Teisuke Takita; Takahiro Aono; Haruko Sakurama; Takafumi Itoh; Takumi Wada; Masashi Minoda; Kiyoshi Yasukawa; Kuniyo Inouye

Thermolysin is remarkably activated and stabilized by neutral salts, and surface charges are suggested important in its activity and stability. The effects of introducing negative charge into the molecular surface on its activity and stability are described. Seven serine residues were selected, and each of them was changed for aspartate by site-directed mutagenesis in a thermolysin mutant. In the hydrolysis of N-[3-(2-furyl)acryloyl]-glycyl-l-leucine amide, the k(cat)/K(m) values of all mutants were almost similar to that of the wild-type enzyme (WT). However, those of six out of seven mutants were enhanced 17-19 times with 4 M NaCl, being slightly higher than WT. The remaining casein-hydrolyzing activities of the S53D and S65D mutants (Ser53 and Ser65 are replaced with Asp, respectively) after 30-min incubation with 10 mM CaCl(2) at 85 degrees C were 78 and 63%, being higher than those of WT (51%) and the other mutants (35-53%). S53D was stabilized with increase in the enthalpy change of activation for thermal inactivation while S65D was with decrease in the entropy change of activation. The stability of WT was enhanced by CaCl(2) and reached the level of S53D and S65D at 100 mM, suggesting that S53D and S65D might be stabilized by reinforcement of the Ca(2+)-binding structures.

Collaboration


Dive into the Kuniyo Inouye's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masaki Kamakura

Toyama Prefectural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge