Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kuo-Fen Lee is active.

Publication


Featured researches published by Kuo-Fen Lee.


Neuron | 1998

Corticotropin Releasing Factor Receptor 1–Deficient Mice Display Decreased Anxiety, Impaired Stress Response, and Aberrant Neuroendocrine Development

George W. Smith; Jean-Michel Aubry; Françoise Dellu; Angelo Contarino; Louise M. Bilezikjian; Lisa H. Gold; Ruoping Chen; Yelena Marchuk; Chris Hauser; Cornelia A. Bentley; Paul E. Sawchenko; George F. Koob; Wylie Vale; Kuo-Fen Lee

Corticotropin releasing factor (CRF) is a major integrator of adaptive responses to stress. Two biochemically and pharmacologically distinct CRF receptor subtypes (CRFR1 and CRFR2) have been described. We have generated mice null for the CRFR1 gene to elucidate the specific developmental and physiological roles of CRF receptor mediated pathways. Behavioral analyses revealed that mice lacking CRFR1 displayed markedly reduced anxiety. Mutant mice also failed to exhibit the characteristic hormonal response to stress due to a disruption of the hypothalamic-pituitary-adrenal (HPA) axis. Homozygous mutant mice derived from crossing heterozygotes displayed low plasma corticosterone concentrations resulting from a marked agenesis of the zona fasciculata region of the adrenal gland. The offspring from homozygote crosses died within 48 hr after birth due to a pronounced lung dysplasia. The adrenal agenesis in mutant animals was attributed to insufficient adrenocorticotropic hormone (ACTH) production during the neonatal period and was rescued by ACTH replacement. These results suggest that CRFR1 plays an important role both in the development of a functional HPA axis and in mediating behavioral changes associated with anxiety.


Nature Genetics | 2000

Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress

Tracy L. Bale; Angelo Contarino; George W. Smith; Raymond K. W. Chan; Lisa H. Gold; Paul E. Sawchenko; George F. Koob; Wylie Vale; Kuo-Fen Lee

Corticotropin-releasing hormone (Crh) is a critical coordinator of the hypothalamic-pituitary-adrenal (HPA) axis. In response to stress, Crh released from the paraventricular nucleus (PVN) of the hypothalamus activates Crh receptors on anterior pituitary corticotropes, resulting in release of adrenocorticotropic hormone (Acth) into the bloodstream. Acth in turn activates Acth receptors in the adrenal cortex to increase synthesis and release of glucocorticoids. The receptors for Crh, Crhr1 and Crhr2, are found throughout the central nervous system and periphery. Crh has a higher affinity for Crhr1 than for Crhr2, and urocortin (Ucn), a Crh-related peptide, is thought to be the endogenous ligand for Crhr2 because it binds with almost 40-fold higher affinity than does Crh (ref. 2). Crhr1 and Crhr2 share approximately 71% amino acid sequence similarity and are distinct in their localization within the brain and peripheral tissues. We generated mice deficient for Crhr2 to determine the physiological role of this receptor. Crhr2-mutant mice are hypersensitive to stress and display increased anxiety-like behaviour. Mutant mice have normal basal feeding and weight gain, but decreased food intake following food deprivation. Intravenous Ucn produces no effect on mean arterial pressure in the mutant mice.


Nature Medicine | 2002

ErbB2 is essential in the prevention of dilated cardiomyopathy

Steven A. Crone; You Yang Zhao; Lian Fan; Yusu Gu; Susumu Minamisawa; Yang Liu; Kirk L. Peterson; Ju Chen; Ronald Kahn; Gianluigi Condorelli; John Ross; Kenneth R. Chien; Kuo-Fen Lee

Amplification of the gene encoding the ErbB2 (Her2/neu) receptor tyrosine kinase is critical for the progression of several forms of breast cancer. In a large-scale clinical trial, treatment with Herceptin (trastuzumab), a humanized blocking antibody against ErbB2, led to marked improvement in survival. However, cardiomyopathy was uncovered as a mitigating side effect, thereby suggesting an important role for ErbB2 signaling as a modifier of human heart failure. To investigate the physiological role of ErbB2 signaling in the adult heart, we generated mice with a ventricular-restricted deletion of Erbb2. These ErbB2-deficient conditional mutant mice were viable and displayed no overt phenotype. However, physiological analysis revealed the onset of multiple independent parameters of dilated cardiomyopathy, including chamber dilation, wall thinning and decreased contractility. Additionally, cardiomyocytes isolated from these conditional mutants were more susceptible to anthracycline toxicity. ErbB2 signaling in cardiomyocytes is therefore essential for the prevention of dilated cardiomyopathy.


Nature | 2001

Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse

Weichun Lin; Robert W. Burgess; Bertha Dominguez; Samuel L. Pfaff; Joshua R. Sanes; Kuo-Fen Lee

The development of chemical synapses is regulated by interactions between pre- and postsynaptic cells. At the vertebrate skeletal neuromuscular junction, the organization of an acetylcholine receptor (AChR)-rich postsynaptic apparatus has been well studied. Much evidence suggests that the nerve-derived protein agrin activates muscle-specific kinase (MuSK) to cluster AChRs through the synapse-specific cytoplasmic protein rapsyn. But how postsynaptic differentiation is initiated, or why most synapses are restricted to an ‘end-plate band’ in the middle of the muscle remains unknown. Here we have used genetic methods to address these issues. We report that the initial steps in postsynaptic differentiation and formation of an end-plate band require MuSK and rapsyn, but are not dependent on agrin or the presence of motor axons. In contrast, the subsequent stages of synaptic growth and maintenance require nerve-derived agrin, and a second nerve-derived signal that disperses ectopic postsynaptic apparatus.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function

Xinyu Zhao; Tetsuya Ueba; Brian R. Christie; Basam Z. Barkho; Michael J. McConnell; Kinichi Nakashima; Edward S. Lein; Brennan D. Eadie; Andrew R. Willhoite; Alysson R. Muotri; Robert G. Summers; Jerold Chun; Kuo-Fen Lee; Fred H. Gage

DNA methylation-mediated epigenetic regulation plays critical roles in regulating mammalian gene expression, but its role in normal brain function is not clear. Methyl-CpG binding protein 1 (MBD1), a member of the methylated DNA-binding protein family, has been shown to bind methylated gene promoters and facilitate transcriptional repression in vitro. Here we report the generation and analysis of MBD1-/- mice. MBD1-/- mice had no detectable developmental defects and appeared healthy throughout life. However, we found that MBD1-/- neural stem cells exhibited reduced neuronal differentiation and increased genomic instability. Furthermore, adult MBD1-/- mice had decreased neurogenesis, impaired spatial learning, and a significant reduction in long-term potentiation in the dentate gyrus of the hippocampus. Our findings indicate that DNA methylation is important in maintaining cellular genomic stability and is crucial for normal neural stem cell and brain functions.


Neuron | 1999

Rescue of the Cardiac Defect in ErbB2 Mutant Mice Reveals Essential Roles of ErbB2 in Peripheral Nervous System Development

Jacqueline K. Morris; Weichun Lin; Chris Hauser; Yelena Marchuk; Damon Getman; Kuo-Fen Lee

ErbB2 receptor tyrosine kinase plays a role in neuregulin signaling and is expressed in the developing nervous system. We genetically rescued the cardiac defect of erbB2 null mutant embryos, which otherwise died at E11. These rescued erbB2 mutant mice die at birth and display a severe loss of both motor and sensory neurons. Motor and sensory axons are severely defasciculated and aberrantly projected within their final target tissues. Schwann cells are completely absent in the peripheral nerves. Schwann cell precursors are present within the DRG and proliferate normally, but their ability to migrate is decreased. Acetylcholine receptors cluster within the central band of the mutant diaphragm muscle. However, these clusters are dispersed and morphologically different from those in control muscle. Our results reveal an important role for erbB2 during normal peripheral nervous system development.


Nature Genetics | 2000

Kit/stem cell factor receptor-induced activation of phosphatidylinositol 3′-kinase is essential for male fertility

Peter Blume-Jensen; Guoqiang Jiang; Robert Hyman; Kuo-Fen Lee; Stephen O'Gorman; Tony Hunter

The c-kit-encoded transmembrane tyrosine kinase receptor for stem cell factor (Kit/SCF-R) is required for normal haematopoiesis, melanogenesis and gametogenesis. However, the roles of individual Kit/SCF-R-induced signalling pathways in the control of developmental processes in the intact animal are completely unknown. To examine the function of SCF-induced phosphatidylinositol (PI) 3′-kinase activation in vivo, we employed the Cre-loxP system to mutate the codon for Tyr719, the PI 3′-kinase binding site in Kit/SCF-R, to Phe in the genome of mice by homologous recombination. Homozygous (Y719F/Y719F) mutant mice are viable. The mutation completely disrupted PI 3′-kinase binding to Kit/SCF-R and reduced SCF-induced PI 3′-kinase-dependent activation of Akt by 90%. The mutation induced a gender- and tissue-specific defect. Although there are no haematopoietic or pigmentation defects in homozygous mutant mice, males are sterile due to a block in spermatogenesis, with initially decreased proliferation and subsequent extensive apoptosis occurring at the spermatogonial stem-cell level. In contrast, female homozygotes are fully fertile. This is the first report so far demonstrating the role of an individual signalling pathway downstream of Kit/SCF-R in the intact animal. It provides the first in vivo model for male sterility caused by a discrete signalling pathway defect affecting early germ cells.


The Journal of Neuroscience | 2002

Mice Deficient for Both Corticotropin-Releasing Factor Receptor 1 (CRFR1) and CRFR2 Have an Impaired Stress Response and Display Sexually Dichotomous Anxiety-Like Behavior

Tracy L. Bale; Roberto Picetti; Angelo Contarino; George F. Koob; Wylie Vale; Kuo-Fen Lee

Corticotropin-releasing factor (CRF) and its family of peptides are critical coordinators of homeostasis whose actions are mediated through their receptors, CRF receptor 1 (CRFR1) and CRFR2, found throughout the CNS and periphery. The phenotypes of mice deficient in either CRFR1 or CRFR2 demonstrate the critical role these receptors play. CRFR1-mutant mice have an impaired stress response and display decreased anxiety-like behavior, whereas CRFR2-mutant mice are hypersensitive to stress and display increased anxiety-like behavior. To further elucidate the roles of both CRF receptors and determine their interaction in behaviors, we have generated mice deficient in both CRFR1 and CRFR2. The behavioral phenotype of these mice demonstrates a novel role of the mothers genotype on development of pup anxiety. We have found that although the female double-mutant mice display anxiolytic-like behavior, the male double-mutant mice show significantly more anxiety-like behavior compared with the females. We have also determined that the dams CRFR2 genotype affects the anxiety-like behavior of the male mice, such that a pup born to a heterozygous or mutant dam displays significantly more anxiety-like behavior regardless of that pups genotype. Double-mutant mice also display an even greater impairment of their hypothalamic–pituitary–adrenal axis response to stress than that of the CRFR1-mutant mice. CRF mRNA levels are elevated in CRFR1- and double-mutant mice, and urocortin III and vasopressin mRNA levels are increased in CRFR2- and double-mutant mice. These results indicate that both CRFR1 and CRFR2 have critical roles in gene regulation and the maintenance of homeostasis in response to stress.


The Journal of Neuroscience | 2005

Defective Neuromuscular Synapses in Mice Lacking Amyloid Precursor Protein (APP) and APP-Like Protein 2

Pei Wang; Guang Yang; Dennis R. Mosier; Paul Chang; Tahire Zaidi; Yan Dao Gong; Nan Ming Zhao; Bertha Dominguez; Kuo-Fen Lee; Wen-Biao Gan; Hui Zheng

Biochemical and genetic studies place the amyloid precursor protein (APP) at the center stage of Alzheimers disease (AD) pathogenesis. Although mutations in the APP gene lead to dominant inheritance of familial AD, the normal function of APP remains elusive. Here, we report that the APP family of proteins plays an essential role in the development of neuromuscular synapses. Mice deficient in APP and its homolog APP-like protein 2 (APLP2) exhibit aberrant apposition of presynaptic marker proteins with postsynaptic acetylcholine receptors and excessive nerve terminal sprouting. The number of synaptic vesicles at presynaptic terminals is dramatically reduced. These structural abnormalities are accompanied by defective neurotransmitter release and a high incidence of synaptic failure. Our results identify APP/APLP2 as key regulators of structure and function of developing neuromuscular synapses.


Brain Research | 1999

Reduced anxiety-like and cognitive performance in mice lacking the corticotropin-releasing factor receptor 1.

Angelo Contarino; Françoise Dellu; George F. Koob; George W. Smith; Kuo-Fen Lee; Wylie Vale; Lisa H. Gold

Corticotropin-releasing factor (CRF) has been hypothesized to be involved in the pathophysiology of anxiety, depression, cognitive and feeding disorders. Two distinct CRF receptor subtypes, CRFR1 and CRFR2, are thought to mediate CRF actions in the CNS. However, the role for each receptor subtype in animal models of neuropsychiatric disorders remains to be determined. Using CRFR1 deficient mice, the present study investigated the functional significance of this CRF receptor subtype in anxiety-like and memory processes. CRFR1 knockout mice displayed an increased exploratory behavior in both the Elevated Plus-maze (EPM) and the Black and White (B-W) test box models of anxiety, indicating an anxiolytic-like effect of the CRFR1 gene deletion. In contrast, during the retrieval trial of a two-trial spatial memory task wild type mice made more visits to and spent more time in the novel arm as opposed to the two familiar ones of a Y-maze apparatus. No increase in the level of exploration of the novel arm by the CRFR1 deficient mice was observed. This indicates that CRFR1 knockout mice are impaired in spatial recognition memory. These results demonstrate that genetic deletion of the CRFR1 receptor can lead to impairments in anxiety-like and cognitive behaviors, supporting a critical role for this receptor in anxiety and cognitive biological processes.

Collaboration


Dive into the Kuo-Fen Lee's collaboration.

Top Co-Authors

Avatar

Wylie Vale

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

George W. Smith

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Bertha Dominguez

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Chien Li

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Fred H. Gage

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Tracy L. Bale

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

George F. Koob

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Weichun Lin

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Zhijiang Chen

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Angelo Contarino

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge