Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kuo-Pao Lai is active.

Publication


Featured researches published by Kuo-Pao Lai.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Androgen receptor is a tumor suppressor and proliferator in prostate cancer.

Yuanjie Niu; Saleh Altuwaijri; Kuo-Pao Lai; Chun-Te Wu; William A. Ricke; Edward M. Messing; Jorge L. Yao; Shuyuan Yeh; Chawnshang Chang

Targeting androgens/androgen receptor (AR) functions via androgen deprivation therapy (ADT) remains the standard treatment for prostate cancer. However, most tumors eventually recur despite ADT. Here we demonstrate that the prostate AR may function as both a suppressor and a proliferator to suppress or promote prostate cancer metastasis. Results from orthotopically recombining stromal WPMY1 cells with epithelial PC3 prostate cancer cells in mice demonstrated that restoring AR in epithelial PC3 cells or knockdown of AR in stromal WPMY1 cells suppressed prostate cancer metastasis. Knockdown of the AR in epithelial CWR22rv1 prostate cancer cells also resulted in increased cell invasion in vitro and in vivo. Restoring AR in PC3 cells (PC3-AR9) results in decreased invasion in bone lesion assays and in vivo mouse models. Mice lacking the prostate epithelial AR have increased apoptosis in epithelial luminal cells and increased proliferation in epithelial basal cells. The consequences of these two contrasting results led to the expansion of CK5/CK8-positive intermediate cells, and mice developed larger and more invasive metastatic tumors in lymph nodes and died earlier than wild-type littermates. Mechanistic dissection suggested that androgens/AR might directly or indirectly modulate metastasis-related genes and suppression of TGFβ1 signals results in the partial inhibition of AR-mediated metastasis. Collectively, our understanding of these opposing roles of prostatic AR may revolutionize the way we combat prostate cancer, and allow the development of new and better therapies by targeting only the proliferative role of AR.


Journal of Clinical Investigation | 2009

Monocyte/macrophage androgen receptor suppresses cutaneous wound healing in mice by enhancing local TNF-α expression

Jiann-Jyh Lai; Kuo-Pao Lai; Kuang-Hsiang Chuang; Philip Chang; I-Chen Yu; Wen-Jye Lin; Chawnshang Chang

Cutaneous wounds heal more slowly in elderly males than in elderly females, suggesting a role for sex hormones in the healing process. Indeed, androgen/androgen receptor (AR) signaling has been shown to inhibit cutaneous wound healing. AR is expressed in several cell types in healing skin, including keratinocytes, dermal fibroblasts, and infiltrating macrophages, but the exact role of androgen/AR signaling in these different cell types remains unclear. To address this question, we generated and studied cutaneous wound healing in cell-specific AR knockout (ARKO) mice. General and myeloid-specific ARKO mice exhibited accelerated wound healing compared with WT mice, whereas keratinocyte- and fibroblast-specific ARKO mice did not. Importantly, the rate of wound healing in the general ARKO mice was dependent on AR and not serum androgen levels. Interestingly, although dispensable for wound closure, keratinocyte AR promoted re-epithelialization, while fibroblast AR suppressed it. Further analysis indicated that AR suppressed wound healing by enhancing the inflammatory response through a localized increase in TNF-alpha expression. Furthermore, AR enhanced local TNF-alpha expression via multiple mechanisms, including increasing the inflammatory monocyte population, enhancing monocyte chemotaxis by upregulating CCR2 expression, and enhancing TNF-alpha expression in macrophages. Finally, targeting AR by topical application of a compound (ASC-J9) that degrades AR protein resulted in accelerated healing, suggesting a potential new therapeutic approach that may lead to better treatment of wound healing.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Targeting the stromal androgen receptor in primary prostate tumors at earlier stages

Yuanjie Niu; Saleh Altuwaijri; Shuyuan Yeh; Kuo-Pao Lai; Shengqiang Yu; Kuang-Hsiang Chuang; Shu-Pin Huang; Henry A. Lardy; Chawnshang Chang

To differentiate roles of androgen receptor (AR) in prostate stromal and epithelial cells, we have generated inducible-(ind)ARKO-TRAMP and prostate epithelial-specific ARKO TRAMP (pes-ARKO-TRAMP) mouse models, in which the AR was knocked down in both prostate epithelium and stroma or was knocked out in the prostate epithelium, respectively. We found that loss of AR in both mouse models resulted in poorly differentiated primary tumors with expanded intermediate cell populations. Interestingly, knockdown of both epithelial and stromal AR in ind-ARKO-TRAMP mice at earlier stages resulted in smaller primary prostate tumors with lower proliferation rates, and knockout of AR in pes-ARKO-TRAMP mice resulted in larger primary prostate tumors with higher proliferation rates. The differential proliferation rates, yet with similarly expanded intermediate cell populations, indicated that the prostate stromal AR might play a more dominant role than the epithelial AR to promote primary tumor proliferation at an early stage of tumor. Tissue recombination of human prostate stromal cell lines (WPMY1-v or WPMY1-ARsi) with human prostate cancer epithelial cell lines (PC3-v or PC3-AR9) further demonstrated that the AR might function as a suppressor in epithelial cells and a proliferator in stromal cells in the primary prostate tumors. The dual roles of the AR in prostate epithelium and stroma may require us to reevaluate the target and timing of androgen-deprivation therapy for prostate cancer patients and may suggest a need to develop new drugs to selectively target stromal AR in the primary prostate tumors at earlier stages.


Journal of Experimental Medicine | 2009

Neutropenia with impaired host defense against microbial infection in mice lacking androgen receptor

Kuang-Hsiang Chuang; Saleh Altuwaijri; Gonghui Li; Jiann-Jyh Lai; Chin-Yi Chu; Kuo-Pao Lai; Hung-Yun Lin; Jong-Wei Hsu; Peter C. Keng; Ming-Chi Wu; Chawnshang Chang

Neutrophils, the major phagocytes that form the first line of cell-mediated defense against microbial infection, are produced in the bone marrow and released into the circulation in response to granulocyte-colony stimulating factor (G-CSF). Here, we report that androgen receptor knockout (ARKO) mice are neutropenic and susceptible to acute bacterial infection, whereas castration only results in moderate neutrophil reduction in mice and humans. Androgen supplement can restore neutrophil counts via stabilizing AR in castrated mice, but not in ARKO and testicular feminization mutant (Tfm) mice. Our results show that deletion of the AR gene does not influence myeloid lineage commitment, but significantly reduces the proliferative activity of neutrophil precursors and retards neutrophil maturation. CXCR2-dependent migration is also decreased in ARKO neutrophils as compared with wild-type controls. G-CSF is unable to delay apoptosis in ARKO neutrophils, and ARKO mice show a poor granulopoietic response to exogenous G-CSF injection. In addition, AR can restore G-CSF–dependent granulocytic differentiation upon transduction into ARKO progenitors. We further found that AR augments G-CSF signaling by activating extracellular signal-regulated kinase 1/2 and also by sustaining Stat3 activity via diminishing the inhibitory binding of PIAS3 to Stat3. Collectively, our findings demonstrate an essential role for AR in granulopoiesis and host defense against microbial infection.


Journal of Molecular Cell Biology | 2013

New therapy targeting differential androgen receptor signaling in prostate cancer stem/progenitor vs. non-stem/progenitor cells

Soo Ok Lee; Zhifang Ma; Chiuan-Ren Yeh; Jie Luo; Tzu-Hua Lin; Kuo-Pao Lai; Shinichi Yamashita; Liang Liang; Jing Tian; Lei Li; Qi Jiang; Chiung-Kuei Huang; Yuanjie Niu; Shuyuan Yeh; Chawnshang Chang

The androgen deprivation therapy (ADT) to systematically suppress/reduce androgens binding to the androgen receptor (AR) has been the standard therapy for prostate cancer (PCa); yet, most of ADT eventually fails leading to the recurrence of castration resistant PCa. Here, we found that the PCa patients who received ADT had increased PCa stem/progenitor cell population. The addition of the anti-androgen, Casodex, or AR-siRNA in various PCa cells led to increased stem/progenitor cells, whereas, in contrast, the addition of functional AR led to decreased stem/progenitor cell population but increased non-stem/progenitor cell population, suggesting that AR functions differentially in PCa stem/progenitor vs. non-stem/progenitor cells. Therefore, the current ADT might result in an undesired expansion of PCa stem/progenitor cell population, which explains why this therapy fails. Using various human PCa cell lines and three different mouse models, we concluded that targeting PCa non-stem/progenitor cells with AR degradation enhancer ASC-J9 and targeting PCa stem/progenitor cells with 5-azathioprine and γ-tocotrienol resulted in a significant suppression of the tumors at the castration resistant stage. This suggests that a combinational therapy that simultaneously targets both stem/progenitor and non-stem/progenitor cells will lead to better therapeutic efficacy and may become a new therapy to battle the PCa before and after castration resistant stages.


Cancer Research | 2013

Infiltrating Macrophages Promote Prostate Tumorigenesis via Modulating Androgen Receptor-Mediated CCL4–STAT3 Signaling

Lei-Ya Fang; Kouji Izumi; Kuo-Pao Lai; Liang Liang; Lei Li; Hiroshi Miyamoto; Wen-Jye Lin; Chawnshang Chang

Infiltrating macrophages are a key component of inflammation during tumorigenesis, but the direct evidence of such linkage remains unclear. We report here that persistent coculturing of immortalized prostate epithelial cells with macrophages, without adding any carcinogens, induces prostate tumorigenesis and that induction involves the alteration of signaling of macrophage androgen receptor (AR)-inflammatory chemokine CCL4-STAT3 activation as well as epithelial-to-mesenchymal transition and downregulation of p53/PTEN tumor suppressors. In vivo studies further showed that PTEN(+/-) mice lacking macrophage AR developed far fewer prostatic intraepithelial neoplasia (PIN) lesions, supporting an in vivo role for macrophage AR during prostate tumorigenesis. CCL4-neutralizing antibody effectively blocked macrophage-induced prostate tumorigenic signaling and targeting AR via an AR-degradation enhancer, ASC-J9, reduced CCL4 expression, and xenografted tumor growth in vivo. Importantly, CCL4 upregulation was associated with increased Snail expression and downregulation of p53/PTEN in high-grade PIN and prostate cancer. Together, our results identify the AR-CCL4-STAT3 axis as key regulators during prostate tumor initiation and highlight the important roles of infiltrating macrophages and inflammatory cytokines for the prostate tumorigenesis.


Embo Molecular Medicine | 2012

Loss of stromal androgen receptor leads to suppressed prostate tumourigenesis via modulation of pro-inflammatory cytokines/chemokines

Kuo-Pao Lai; Shinichi Yamashita; Chiung-Kuei Huang; Shuyuan Yeh; Chawnshang Chang

Stromal–epithelial interaction is crucial to mediate normal prostate and prostate cancer (PCa) development. The indispensable roles of mesenchymal/stromal androgen receptor (AR) for the prostate organogenesis have been demonstrated by using tissue recombination from wild‐type and testicular feminized mice. However, the stromal AR functions in the tumour microenvironment and the underlying mechanisms governing the interactions between the epithelium and stroma are not completely understood. Here, we have established the first animal model with AR deletion in stromal fibromuscular cells (dARKO, AR knockout in fibroblasts and smooth muscle cells) in the Pten+/− mouse model that can spontaneously develop prostatic intraepithelial neoplasia (PIN). We found that loss of stromal fibromuscular AR led to suppression of PIN lesion development with alleviation of epithelium proliferation and tumour‐promoting microenvironments, including extracellular matrix (ECM) remodelling, immune cell infiltration and neovasculature formation due, in part, to the modulation of pro‐inflammatory cytokines/chemokines. Finally, targeting stromal fibromuscular AR with the AR degradation enhancer, ASC‐J9®, resulted in the reduction of PIN development/progression, which might provide a new approach to suppress PIN development.


Archives of Dermatological Research | 2012

The role of androgen and androgen receptor in skin-related disorders

Jiann-Jyh Lai; Philip Chang; Kuo-Pao Lai; Lu-Min Chen; Chawnshang Chang

Androgen and androgen receptor (AR) may play important roles in several skin-related diseases, such as androgenetic alopecia and acne vulgaris. Current treatments for these androgen/AR-involved diseases, which target the synthesis of androgens or prevent its binding to AR, can cause significant adverse side effects. Based on the recent studies using AR knockout mice, it has been suggested that AR and androgens play distinct roles in the skin pathogenesis, and AR seems to be a better target than androgens for the treatment of these skin diseases. Here, we review recent studies of androgen/AR roles in several skin-related disorders, including acne vulgaris, androgenetic alopecia and hirsutism, as well as cutaneous wound healing.


American Journal of Pathology | 2012

Androgen Receptor Influences on Body Defense System via Modulation of Innate and Adaptive Immune Systems: Lessons from Conditional AR Knockout Mice

Jiann-Jyh Lai; Kuo-Pao Lai; Wei-ping Zeng; Kuang-Hsiang Chuang; Saleh Altuwaijri; Chawnshang Chang

Upon insult, such as infection or tissue injury, the innate and adaptive immune systems initiate a series of responses to defend the body. Recent studies from immune cell-specific androgen receptor (AR) knockout mice demonstrated that androgen and its receptor (androgen/AR) play significant roles in both immune regulations. In the innate immunity, androgen/AR is required for generation and proper function of neutrophils; androgen/AR also regulates wound healing processes through macrophage recruitment and proinflammatory cytokine production. In adaptive immunity, androgen/AR exerts suppressive effects on development and activation of T and B cells. Removal of such suppression causes thymic enlargement and excessive export of immature B cells. Altogether, androgen/AR plays distinct roles in individual immune cells, and targeting androgen/AR may help in treatment and management of immune-related diseases.


American Journal of Pathology | 2013

Androgen Receptor Roles in the Development of Benign Prostate Hyperplasia

Kouji Izumi; Atsushi Mizokami; Wen-Jye Lin; Kuo-Pao Lai; Chawnshang Chang

Benign prostate hyperplasia (BPH) is a major cause of lower urinary tract symptoms, with an increased volume of transitional zone and associated with increased stromal cells. It is known that androgen/androgen receptor (AR) signaling plays a key role in development of BPH, and that blockade of this signaling decreases BPH volume and can relieve lower urinary tract symptoms, but the mechanisms of androgen/AR signaling in BPH development remain unclear, and the effectiveness of current drugs for treating BPH is still limited. The detailed mechanisms of androgen/AR signaling need to be clarified, and new therapies are needed for better treatment of BPH patients. This review focuses on roles of AR in epithelial and stromal cells in BPH development. In epithelial cells, AR may contribute to BPH development via epithelial cell-stromal cell interaction with alterations of epithelial-mesenchymal transition, leading to proliferation of stromal cells. Data from several mouse models with selective knockout of AR in stromal smooth-muscle cells and/or fibroblasts indicate that the AR in stromal cells can also promote BPH development. In prostatic inflammation, AR roles in infiltrating macrophages and epithelial and stromal cells have been linked to BPH development, which has led to discovery of new therapeutic targets. For example, targeting AR with the novel AR degradation enhancer, ASC-J9 offers a potential therapeutic approach against BPH development.

Collaboration


Dive into the Kuo-Pao Lai's collaboration.

Top Co-Authors

Avatar

Chawnshang Chang

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Shuyuan Yeh

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Soo Ok Lee

University of Rochester

View shared research outputs
Top Co-Authors

Avatar

Jiann-Jyh Lai

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jie Luo

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jing Tian

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kuang-Hsiang Chuang

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Saleh Altuwaijri

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lei Li

Xi'an Jiaotong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge