Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kuppusamy Balamurugan is active.

Publication


Featured researches published by Kuppusamy Balamurugan.


Molecular and Cellular Biology | 2006

A Family Knockout of All Four Drosophila Metallothioneins Reveals a Central Role in Copper Homeostasis and Detoxification

Dieter Egli; Hasmik Yepiskoposyan; Anand Selvaraj; Kuppusamy Balamurugan; Rama Rajaram; Andreas Simons; Gerd Multhaup; Simone Mettler; Alla Vardanyan; Oleg Georgiev; Walter Schaffner

ABSTRACT Metallothioneins are ubiquitous, small, cysteine-rich proteins with the ability to bind heavy metals. In spite of their biochemical characterization, their in vivo function remains elusive. Here, we report the generation of a metallothionein gene family knockout in Drosophila melanogaster by targeted disruption of all four genes (MtnA to -D). These flies are viable if raised in standard laboratory food. During development, however, they are highly sensitive to copper, cadmium, and (to a lesser extent) zinc load. Metallothionein expression is particularly important for male viability; while copper load during development affects males and females equally, adult males lacking metallothioneins display a severely reduced life span, possibly due to copper-mediated oxidative stress. Using various reporter gene constructs, we find that different metallothioneins are expressed with virtually the same tissue specificity in larvae, notably in the intestinal tract at sites of metal accumulation, including the midguts “copper cells.” The same expression pattern is observed with a synthetic minipromoter consisting only of four tandem metal response elements. From these and other experiments, we conclude that tissue specificity of metallothionein expression is a consequence, rather than a cause, of metal distribution in the organism. The bright orange luminescence of copper accumulated in copper cells of the midgut is severely reduced in the metallothionein gene family knockout, as well as in mutants of metal-responsive transcription factor 1 (MTF-1), the main regulator of metallothionein expression. This indicates that an in vivo metallothionein-copper complex forms the basis of this luminescence. Strikingly, metallothionein mutants show an increased, MTF-1-dependent induction of metallothionein promoters in response to copper, cadmium, silver, zinc, and mercury. We conclude that free metal, but not metallothionein-bound metal, triggers the activation of MTF-1 and that metallothioneins regulate their own expression by a negative feedback loop.


Genes to Cells | 2006

The four members of the Drosophila metallothionein family exhibit distinct yet overlapping roles in heavy metal homeostasis and detoxification

Dieter Egli; Jordi Domènech; Anand Selvaraj; Kuppusamy Balamurugan; Haiqing Hua; Mercè Capdevila; Oleg Georgiev; Walter Schaffner; Sílvia Atrian

Four metallothionein genes are present in the Drosophila melanogaster genome, designated MtnA, MtnB, MtnC, MtnD, all of which are transcriptionally induced by heavy metals through the same metal‐responsive transcription factor, MTF‐1. Here we show, by targeted mutagenesis, that the four metallothionein genes exhibit distinct, yet overlapping, roles in heavy metal homeostasis and toxicity prevention. Among the individual metallothionein mutants, the most prominent distinction between them was that MtnA‐defective flies were the most sensitive to copper load, while MtnB‐defective flies were the most sensitive to cadmium. Using various reporter gene constructs and mRNA quantification, we show that the MtnA promoter is preferentially induced by copper, while the MtnB promoter is preferentially induced by cadmium. Such a metal preference is also observed at the protein level as the stoichiometric, spectrometric and spectroscopic features of the copper and cadmium complexes with MtnA and MtnB correlate well with a greater stability of copper‐MtnA and cadmium‐MtnB. Finally, MtnC and MtnD, both of which are very similar to MtnB, display lower copper and cadmium binding capabilities compared to either MtnA or MtnB. In accordance with these binding studies, Drosophila mutants of MtnC or MtnD have a near wild type level of resistance against copper or cadmium load. Furthermore, eye‐specific over‐expression of MtnA and MtnB, but not of MtnC or MtnD, can rescue a “rough eye” phenotype caused by copper load in the eye. Taken together, while the exact roles of MtnC and MtnD remain to be determined, the preferential protection against copper and cadmium toxicity by MtnA and MtnB, respectively, are the result of a combination of promoter preference and metal binding.


The EMBO Journal | 2010

The tumour suppressor C/EBPδ inhibits FBXW7 expression and promotes mammary tumour metastasis.

Kuppusamy Balamurugan; Ju Ming Wang; Hsin Hwa Tsai; Shikha Sharan; Miriam R. Anver; Robert Leighty; Esta Sterneck

Inflammation and hypoxia are known to promote the metastatic progression of tumours. The CCAAT/enhancer‐binding protein‐δ (C/EBPδ, CEBPD) is an inflammatory response gene and candidate tumour suppressor, but its physiological role in tumourigenesis in vivo is unknown. Here, we demonstrate a tumour suppressor function of C/EBPδ using transgenic mice overexpressing the Neu/Her2/ERBB2 proto‐oncogene in the mammary gland. Unexpectedly, this study also revealed that C/EBPδ is necessary for efficient tumour metastasis. We show that C/EBPδ is induced by hypoxia in tumours in vivo and in breast tumour cells in vitro, and that C/EBPδ‐deficient cells exhibit reduced glycolytic metabolism and cell viability under hypoxia. C/EBPδ supports CXCR4 expression. On the other hand, C/EBPδ directly inhibits expression of the tumour suppressor F‐box and WD repeat‐domain containing 7 gene (FBXW7, FBW7, AGO, Cdc4), encoding an F‐box protein that promotes degradation of the mammalian target of rapamycin (mTOR). Consequently, C/EBPδ enhances mTOR/AKT/S6K1 signalling and augments translation and activity of hypoxia‐inducible factor‐1α (HIF‐1α), which is necessary for hypoxia adaptation. This work provides new insight into the mechanisms by which metastasis‐promoting signals are induced specifically under hypoxia.


The EMBO Journal | 2007

Copper homeostasis in Drosophila by complex interplay of import, storage and behavioral avoidance

Kuppusamy Balamurugan; Dieter Egli; Haiqing Hua; Rama Rajaram; Gerhard Seisenbacher; Oleg Georgiev; Walter Schaffner

Copper is an essential but potentially toxic trace element. In Drosophila, the metal‐responsive transcription factor (MTF‐1) plays a dual role in copper homeostasis: at limiting copper concentrations, it induces the Ctr1B copper importer gene, whereas at high copper concentrations, it mainly induces the metallothionein genes. Here we find that, despite the downregulation of the Ctr1B gene at high copper concentrations, the protein persists on the plasma membrane of intestinal cells for many hours and thereby fills the intracellular copper stores. Drosophila may risk excessive copper accumulation for the potential benefit of overcoming a period of copper scarcity. Indeed, we find that copper‐enriched flies donate a vital supply to their offspring, allowing the following generation to thrive on low‐copper food. We also describe two additional modes of copper handling: behavioral avoidance of food containing high (⩾0.5 mM) copper levels, as well as the ability of DmATP7, the Drosophila homolog of Wilson/Menkes disease copper exporters, to counteract copper toxicity. Regulated import, storage, export, and avoidance of high‐copper food establish an adequate copper homeostasis under variable environmental conditions.


Biological Chemistry | 2004

Metal-responsive transcription factor (MTF-1) and heavy metal stress response in Drosophila and mammalian cells: a functional comparison.

Kuppusamy Balamurugan; Dieter Egli; Anand Selvaraj; Bo Zhang; Oleg Georgiev; Walter Schaffner

Abstract The zinc finger transcription factor MTF-1 (metalresponsive transcription factor-1) is conserved from insects to vertebrates. Its major role in both organisms is to control the transcription of genes involved in the homeostasis and detoxification of heavy metal ions such as Cu[2+], Zn[2+] and Cd [2+]. In mammals, MTF-1 serves at least two additional roles. First, targeted disruption of the MTF-1 gene results in death at embryonic day 14 due to liver degeneration, revealing a stagespecific developmental role. Second, under hypoxicanoxic stress, MTF-1 helps to activate the transcription of the gene placental growth factor (PlGF), an angiogenic protein. Recently we characterized dMTF-1, the Drosophila homolog of mammalian MTF-1. Here we present a series of studies to compare the metal response in mammals and insects, which reveal common features but also differences. A human MTF-1 transgene can restore to a large extent metal tolerance to flies lacking their own MTF-1 gene, both at low and high copper concentrations. Likewise, Drosophila MTF-1 can substitute for human MTF-1 in mammalian cell culture, although both the basal and the metalinduced transcript levels are lower. Finally, a clear difference was revealed in the response to mercury, a highly toxic heavy metal: metallothioneintype promoters respond poorly, if at all, to Hg[2+] in mammalian cells but strongly in Drosophila, and this response is completely dependent on dMTF-1.


Nucleic Acids Research | 2008

Copper sensing function of Drosophila metal-responsive transcription factor-1 is mediated by a tetranuclear Cu(I) cluster

Xiaohua Chen; Haiqing Hua; Kuppusamy Balamurugan; Xiangming Kong; Limei Zhang; Graham N. George; Oleg Georgiev; Walter Schaffner; David P. Giedroc

Drosophila melanogaster MTF-1 (dMTF-1) is a copper-responsive transcriptional activator that mediates resistance to Cu, as well as Zn and Cd. Here, we characterize a novel cysteine-rich domain which is crucial for sensing excess intracellular copper by dMTF-1. Transgenic flies expressing mutant dMTF-1 containing alanine substitutions of two, four or six cysteine residues within the sequence 547CNCTNCKCDQTKSCHGGDC565 are significantly or completely impaired in their ability to protect flies from copper toxicity and fail to up-regulate MtnA (metallothionein) expression in response to excess Cu. In contrast, these flies exhibit wild-type survival in response to copper deprivation thus revealing that the cysteine cluster domain is required only for sensing Cu load by dMTF-1. Parallel studies show that the isolated cysteine cluster domain is required to protect a copper-sensitive S. cerevisiae ace1Δ strain from copper toxicity. Cu(I) ligation by a Cys-rich domain peptide fragment drives the cooperative assembly of a polydentate [Cu4-S6] cage structure, characterized by a core of trigonally S3 coordinated Cu(I) ions bound by bridging thiolate ligands. While reminiscent of Cu4-L6 (L = ligand) tetranuclear clusters in copper regulatory transcription factors of yeast, the absence of significant sequence homology is consistent with convergent evolution of a sensing strategy particularly well suited for Cu(I).


Carcinogenesis | 2008

Impaired DNA double-strand break repair contributes to chemoresistance in HIF-1α-deficient mouse embryonic fibroblasts

Renato Wirthner; Simon Wrann; Kuppusamy Balamurugan; Roland H. Wenger; Daniel P. Stiehl

A mismatch between metabolic demand and oxygen delivery leads to microenvironmental changes in solid tumors. The resulting tumor hypoxia is associated with malignant progression, therapy resistance and poor prognosis. However, the molecular mechanisms underlying therapy resistance in hypoxic tumors are not fully understood. The hypoxia-inducible factor (HIF) is a master transcriptional activator of oxygen-regulated gene expression. Transformed mouse embryonic fibroblasts (MEFs) derived from HIF-1alpha-deficient mice are a popular model to study HIF function in tumor progression. We previously found increased chemotherapy and irradiation susceptibility in the absence of HIF-1alpha. Here, we show by single-cell electrophoresis, histone 2AX phosphorylation and nuclear foci formation of gammaH2AX and 53BP1, that the number of DNA double-strand breaks (DSB) is increased in untreated and etoposide-treated HIF-deficient MEFs. In etoposide-treated cells, cell cycle control and p53-dependent gene expression were not affected by the absence of HIF-1alpha. Using a candidate gene approach to screen 17 genes involved in DNA repair, messenger RNA (mRNA) and protein of three members of the DNA-dependent protein kinase complex were found to be decreased in HIF-deficient MEFs. Of note, residual HIF-1alpha protein in cancer cells with a partial HIF-1alpha mRNA knockdown was sufficient to confer chemoresistance. In summary, these data establish a novel molecular link between HIF and DNA DSB repair. We suggest that selection of early, non-hypoxic tumor cells expressing low levels of HIF-1alpha might contribute to HIF-dependent tumor therapy resistance.


Methods in Enzymology | 2007

Determination and Modulation of Prolyl‐4‐Hydroxylase Domain Oxygen Sensor Activity

Renato Wirthner; Kuppusamy Balamurugan; Daniel P. Stiehl; Sandra Barth; Patrick Spielmann; Felix Oehme; Ingo Flamme; Dörthe M. Katschinski; Roland H. Wenger; Gieri Camenisch

The prolyl-4-hydroxylase domain (PHD) oxygen sensor proteins hydroxylate hypoxia-inducible transcription factor (HIF)-alpha (alpha) subunits, leading to their subsequent ubiquitinylation and degradation. Since oxygen is a necessary cosubstrate, a reduction in oxygen availability (hypoxia) decreases PHD activity and, subsequently, HIF-alpha hydroxylation. Non-hydroxylated HIF-alpha cannot be bound by the ubiquitin ligase von Hippel-Lindau tumor suppressor protein (pVHL), and HIF-alpha proteins thus become stabilized. HIF-alpha then heterodimerizes with HIF-beta (beta) to form the functionally active HIF transcription factor complex, which targets approximately 200 genes involved in adaptation to hypoxia. The three HIF-alpha PHDs are of a different nature compared with the prototype collagen prolyl-4-hydroxylase, which hydroxylates a mass protein rather than a rare transcription factor. Thus, novel assays had to be developed to express and purify functionally active PHDs and to measure PHD activity in vitro. A need also exists for such assays to functionally distinguish the three different PHDs in terms of substrate specificity and drug function. We provide a detailed description of the expression and purification of the PHDs as well as of an HIF-alpha-dependent and a HIF-alpha-independent PHD assay.


Biological Chemistry | 2009

Mercury and cadmium trigger expression of the copper importer Ctr1B, which enables Drosophila to thrive on heavy metal-loaded food

Kuppusamy Balamurugan; Haiqing Hua; Oleg Georgiev; Walter Schaffner

Abstract Organisms from insects to mammals respond to heavy metal load (copper, zinc, cadmium, and mercury) by activating the metal-responsive transcription factor 1 (MTF-1). MTF-1 binds to short DNA sequence motifs, termed metal response elements, and boosts transcription of a number of genes, notably those for metallothioneins. In Drosophila, MTF-1 somewhat counter-intuitively also activates transcription of a copper importer gene (Ctr1B) in response to copper starvation. Here, we report that mutant flies lacking Ctr1B are extremely sensitive to cadmium and mercury treatment, but can be rescued by excess copper in the food. We thus propose that copper, by competing for binding sites on cellular proteins, alleviates the toxic effects of mercury and cadmium. Such a scenario also explains a seemingly fortuitous metal response, namely, that cadmium and mercury strongly induce the expression of a Ctr1B reporter gene. Thus, the transcription enhancer/promoter region of the Ctr1B copper importer gene is subject to three modes of regulation. All of them depend on MTF-1 and all make biological sense, namely, (i) induction by copper starvation, (ii) repression by copper abundance, and (iii), as shown here, induction by cadmium or mercury at normal copper supply.


Archive | 2009

2:Regulation of Metallothionein Gene Expression

Kuppusamy Balamurugan; Walter Schaffner

Organisms from bacteria to humans use elaborate systems to regulate levels of bioavailable zinc, copper, and other essential metals. An excess of them, or even traces of non-essential metals such as cadmium and mercury, can be highly toxic. Metallothioneins (MTs), short, cysteine-rich proteins, play pivotal roles in metal homeostasis and detoxification. With their sulfhydryl groups they avidly bind toxic metals and also play a role in cellular redox balance and radical scavenging. The intracellular concentration of MTs is adjusted to cellular demand primarily via regulated transcription. Especially upon heavy metal load, metallothionein gene transcription is strongly induced. From insects to mammals, the major regulator of MT transcription is MTF-1 (metal-responsive transcription factor 1), a zinc finger protein that binds to specific DNA sequence motifs (MREs) in the promoters of MT genes and other metal-regulated genes. This chapter provides an overview of our current knowledge on the expression and regulation of MT genes in higher eukaryotes, with some reference also to fungi which apparently have independently evolved their own regulatory systems.

Collaboration


Dive into the Kuppusamy Balamurugan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Esta Sterneck

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Shikha Sharan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge