Kur Ta Cheng
Taipei Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kur Ta Cheng.
Phytomedicine | 2003
Wen Chi Hou; R.-D. Lin; Kur Ta Cheng; Y.-T. Hung; C.-H. Cho; C.-H. Chen; S.-Y. Hwang; M.-H. Lee
The 70% aqueous acetone extracts of ten Taiwanese native plants were evaluated by various antioxidant assays, including 1, 1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl (.OH) radicals, and reducing power assay. In the present study, extracts of Acer buerferianum var. formosanum, Cleyera japonica var. morii, Cyclobalanopsis stenophylla var. stenophylloides, and Machilus zuihoensis exhibited stronger activity against DPPH radicals, and their IC50 values ranged from 5.4 to 8.3 microg/ml. The ten selected extracts effectively inhibited the formation of .OH generated in the Fenton reaction system. Among the extracts whose reducing power activities were determined, A. buerferianum var. formosanum, C. japonica var. morii, C. stenophylla var. stenophylloides, Eriobotrya deflex, and M. zuihoensis showed high activity. The results indicate the 70% aqueous acetone extracts of A. buerferianum var. formosanum, C. japonica var. morii, C. stenophylla var. stenophylloides, and M. zuihoensis with great potency in these assay systems and may be candidates for the development of natural antioxidants.
Journal of Dermatological Science | 2013
Hsiou Hsin Tsai; Woan Rouh Lee; Pai Hua Wang; Kur Ta Cheng; Yen Chou Chen; Shing Chuan Shen
BACKGROUND Propionibacterium acnes (P. acnes), a gram-positive anaerobic bacterium, plays a critical role in the development of inflammatory lesion as a result of cytokines production by keratinocytes and macrophages activation. However, effect of P. acnes on iNOS/NO and COX-2/PGE2 production in macrophages is still uninvestigated. OBJECTIVE This study aimed at determining the reactive oxygen species (ROS), inducible nitric oxide (NO) synthase (iNOS)/nitric oxide (NO), and cyclooxygenase (COX)-2/prostaglandin (PG)E2 produced by macrophages upon P. acnes infection, and dissecting the mechanism of P. acnes-stimulated multiplicity of infection (MOI)-dependent increases in iNOS and COX-2 protein expressions in accordance with the elevation of NO and PGE2 production by RAW264.7 macrophages. METHODS Using an in vitro cell culture system, the effects of P. acnes on iNOS/NO, COX-2/PGE2, ROS production, ERK/JNK, and AP-1/NF-κB activation were examined via Western blotting, a flow cytometric analysis, and luciferase assay. In pharmacological studies, the ROS scavenger, N-acetyl cysteine (NAC), the NADPH oxidase inhibitor, diphenylene iodide (DPI), and mitogen-activated protein kinase (MAPK) inhibitors (U0126 and SP600125) were applied to investigate the mechanism. RESULTS We found that P. acnes exposures increased iNOS/NO and COX-2/PGE2 expression in RAW264.7, J774A.1, and peritoneal macrophages via a MOI-dependent manner. Increased ROS production, ERK/JNK protein phosphorylation, and elevated AP-1/NF-κB luciferase activity are identified in P. acnes-induced iNOS/NO and COX-2/PGE2 production. Additionally, hispolon but not its analogs, hispolon methylether or dehydroxyhispolon, showed significant inhibition of P. acnes-induced iNOS/NO and COX-2/PGE2 production, indicating an important role of OH at C5 for hispolons inhibition of P. acnes-induced inflammatory events in macrophages. CONCLUSION ROS-dependent stimulation of ERK, JNK, NF-κB, and AP-1 activation contributes to P. acnes-induced iNOS/NO and COX-2/PGE2 in macrophages, and chemicals such as hispolon possessing ability to block iNOS/NO and COX-2/PGE2 production reserve potential to be further developed for treatment of the early phase of inflammation elicited by P. acnes.
The American Journal of Chinese Medicine | 2000
Kur Ta Cheng; Borcherng Su; Chien Tsu Chen; Chun Ching Lin
The genetic variability of Astragalus medicine materials sold by twenty randomly selected stores in Taiwan was investigated using RAPD analysis in order to obtain available primers which could clearly differentiate among them. Total DNA isolated from the rhizomes of the samples were used as templates, and sixty 10 mer arbitrary primers were used in the analysis. The aim of the present study is to construct an identification model of molecular biotechniques applicable to Chinese herbal medicines in RAPD analysis. Three of the primers, OPT-03, OPT-13, and OPT-17, revealed polymorphic RAPD fingerprints among the samples of Astragalus membranaceus, and between Astragalus membranaceus and Hedysarum polybotrys samples. SSCP analysis was also conducted on PCR products from the ITS-1 region of ribosomal DNA in order to differentiate the two species.
Planta Medica | 2011
Szu Hsu Yu; Yung Ta Kao; Jui Yu Wu; Shih Hao Huang; Sheng-Tung Huang; Chi-Ming Lee; Kur Ta Cheng; Chun Mao Lin
An increasing number of studies show that AMP-activated protein kinase (AMPK) activation can inhibit apoptosis. To clarify the antitumor mechanism of caffeic acid phenethyl ester (CAPE) and achieve increased therapeutic efficiency, we investigated the potential roles of AMPK and autophagy in CAPE treatment against C6 glioma cells. The roles of AMPK and autophagy inhibition in CAPEs cytotoxic action were investigated. Phosphorylation of AMPK and mitogen-activated protein kinases (MAPKs) were observed in tumor cells following CAPE treatment. A combination of CAPE and the AMPK inhibitor, compound C, resulted in augmented cell death. Similar effects of compound C were observed in response to changes in the mitochondrial membrane potential ( ΔΨ(m)). Small interfering RNA-mediated AMPK downregulation increased CAPE-induced cell death. The results suggest that AMPK activation plays a role in diminishing apoptosis. CAPE treatment induced an increase in LC3 conversion as represented by the LC3-II/LC3-I ratio. Enlarged lysosomes and autophagosomes were present according to electron microscopy. The autophagy inhibitor, 3-MA, caused increased CAPE cytotoxicity, which suggests that autophagy induction protected glioma cells from CAPE. The combination of CAPE with autophagy and AMPK inhibitors markedly enhanced the cytotoxicity toward C6 glioma cells. Accordingly, CAPE-triggered activation of AMPK and the autophagic response protected tumor cells from apoptotic death. This provides new insights for combined therapy to enhance the therapeutic potential of cancer treatments.
Molecules | 2009
Yueh Lun Lee; Mei-Hsien Lee; Hsiu-Ju Chang; Po-Yuan Huang; I-Jen Huang; Kur Ta Cheng; Sy Jye Leu
Medicinal plants have long been used as a source of therapeutic agents. They are thought to be important anti-aging ingredients in prophylactic medicines. The aim of this study was to screen extracts from Taiwanese plant materials for phenolic contents and measure the corresponding matrix metalloproteinase-9 (MMP-9) activity. We extracted biological ingredients from eight plants native to Taiwan (Alnus formosana, Diospyros discolor, Eriobotrya deflex, Machilus japonica, Pyrrosia polydactylis, Pyrus taiwanensis, Vitis adstricta, Vitis thunbergii). Total phenolic content was measured using the Folin-Ciocalteu method. MMP-9 activities were measured by gelatin zymography. The extracted yields of plants ranged from 3.7 % to 16.9 %. The total phenolic contents ranged from 25.4 to 36.8 mg GAE/g dry material. All of these extracts (except Vitis adstricta Hance) were shown to inhibit MMP-9 activity of WS-1 cell after ultraviolet B irradiation. These findings suggest that total phenolic content may influence MMP-9 activity and that some of the plants with higher phenolic content exhibited various biological activities that could serve as potent inhibitors of the ageing process in the skin. This property might be useful in the production of cosmetics.
PLOS ONE | 2015
Yu Chieh Lee; Chii Hong Lee; Hsiang Ping Tsai; Herng Wei An; Chi-Ming Lee; Jen Chine Wu; Chien Shu Chen; Shih Hao Huang; Jaulang Hwang; Kur Ta Cheng; Phui Ly Leiw; Chi Long Chen; Chun Mao Lin
DNA topoisomerase I (TOP1) levels of several human neoplasms are higher than those of normal tissues. TOP1 inhibitors are widely used in treating conventional therapy-resistant ovarian cancers. However, patients may develop resistance to TOP1 inhibitors, hampering chemotherapy success. In this study, we examined the mechanisms associated with the development of camptothecin (CPT) resistance in ovarian cancers and identified evodiamine (EVO), a natural product with TOP1 inhibiting activity that overcomes the resistance. The correlations among TOP1 levels, cancer staging, and overall survival (OS) were analyzed. The effect of EVO on CPT-resistant ovarian cancer was evaluated in vitro and in vivo. TOP1 was associated with poor prognosis in ovarian cancers (p = 0.024). EVO induced apoptosis that was detected using flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The tumor size decreased significantly in the EVO treatment group compared with the control group (p < 0.01) in a xenograft mouse model. Effects of drugs targeting TOP1 for prognosis and therapy in CPT-resistant ovarian cancer are anticipated. EVO with TOP1 can be developed as an antiproliferative agent for overcoming CPT resistance in ovarian cancers.
Journal of Ethnopharmacology | 2014
Liang Yo Yang; Shing Chuan Shen; Kur Ta Cheng; Gottumukkala V. Subbaraju; Chih Chiang Chien; Yen Chou Chen
ETHNOPHARMACOLOGICAL RELEVANCE Phellinus linteus (Berkeley & Curtis), a well-known medical fungus, has long been used as a traditional medicine in Oriental countries to treat various diseases, and hispolon (HIS) is one of its bioactive components. HIS is known to possess potent antineoplastic and antiviral properties; however, its effect on inflammatory apoptosis is still undefined. MATERIALS AND METHODS RAW264.7 macrophages were incubated with HIS for 30 min followed by LPS, LTA, or PGN stimulation for 12h. The expression of indicated proteins AP-1 and NF-κB transcriptional activities was examined by Western blotting using specific antibodies. Levels of NO and ROS were examined by Griess reaction, and DCHF-DA staining via flow cytometric analysis, respectively. AP-1 and NF-κB transcriptional activities were detected by luciferase reporter assay. Knockdown of HO-1 protein expression was performed by transfection of macrophages with HO-1 siRNA. Pharmacological inhibitors including ROS scavenger NAC, JNK inhibitor SP600125, NF-κB inhibitor BAY117082 were applied for mechanism study. RESULTS HIS showed concentration-dependent inhibition of LPS, LTA, and PGN-induced iNOS protein expressions and NO production by RAW264.7 macrophages. Accordingly, HIS protected RAW264.7 cells from LPS-, LTA-, and PGN-induced apoptosis. Increased HO-1 by HIS was detected at both protein and mRNA levels along with an increase in intracellular peroxide, and this was inhibited by the translational inhibitor, cycloheximide (CHX), the transcriptional inhibitor, actinomycin D (Act D), and the reactive oxygen species scavenger, N-acetylcysteine (NAC). A mechanistic study indicated that inhibition of c-Jun N-terminal kinase (JNK) protein phosphorylation, and activator protein (AP)-1 and nuclear factor (NF)-κB activation were involved in the anti-inflammatory actions of HIS in macrophages. A structure-activity relationship analysis showed that HIS expressed the most potent effect of inhibiting iNOS and apoptosis elicited by LPS, LTA, and PGN with a significant increase in HO-1 protein in macrophages. CONCLUSIONS Evidence supporting HIS prevention of inflammatory apoptosis via blocking NO production and inducing HO-1 protein expression in macrophages is provided, and the hydroxyl at position C3 is a critical substitution for the anti-inflammatory actions of HIS.
Annals of the New York Academy of Sciences | 2005
Leng-Fang Wang; Chun Mao Lin; Chwen Ming Shih; Hui Ju Chen; Borcherng Su; Cheng Chuang Tseng; Bao Bih Gau; Kur Ta Cheng
Abstract: Anoectochilus formosanus (AF) is a popular folk medicine in Taiwan whose pharmacological effects have been characterized. In this work we investigated the antioxidant properties of an aqueous extract prepared from AF. The AF extract was capable of scavenging H2O2 in a dose‐dependent manner. We induced oxidative stress in HL‐60 cells, either by the addition of hydrogen peroxide (H2O2) or by the xanthine/xanthine oxidase reaction. Apoptosis caused by oxidative damage was displayed by DNA fragmentation on gel electrophoresis, and the apoptotic fraction was quantified with flow cytometry. The cell damage induced by oxidative stress was prevented by the plant extract in a concentration‐dependent manner. Furthermore, the proteolytic cleavage of poly(ADP‐ribose) polymerase during the apoptotic process was also inhibited by AF extract. Our results provide the basis for determining an AF extract to be an antioxidant.
Phytomedicine | 2015
Kur Ta Cheng; Yu Shiou Wang; Hsiu Chu Chou; Chih Cheng Chang; Ching Kuo Lee; Shu Hui Juan
BACKGROUND Currently, more than one-third of the global population is overweight or obese, which is a risk factor for major causes of death including cardiovascular disease, numerous cancers, and diabetes. Kinsenoside, a major active component of Anoectochilus formosanus exhibits antihyperglycemic, antihyperliposis, and hepatoprotective effects and can be used to prevent and manage obesity. PURPOSE This study examined the catabolic effects of kinsenoside on lipolysis in adipocytes transformed from C3H10T1/2 cells. STUDY DESIGN/METHODS The lipolytic effect of kinsenoside in C3H10T1/2 adipocytes was evaluated by oil-red O staining and glycerol production. The underlying mechanisms were assessed by Western blots, chromatin immunoprecipitation (IP), Co-IP, EMSA and siRNAs verification. RESULTS We demonstrated that kinsenoside increased both adipose triglyceride lipase (ATGL)-mediated lipolysis, which was upregulated by AMP-activated protein kinase (AMPK) activation, and the hydrolysis of triglycerides to glycerol and fatty acids that require transportation into mitochondria for further β-oxidation. We also demonstrated that kinsenoside increased the phosphorylation of peroxisome proliferator-activated receptor alpha (PPARα) and CRE-binding protein (CREB), and the protein levels of silent information regulator T1 (SIRT1), peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) and carnitine palmitoyltransferase I (CPT1) through an AMPK-dependent mechanism. SIRT1 deacetylated PGC-1α, facilitating AMPK-mediated PGC-1α phosphorylation and increasing the interaction of PPARα with its coactivator, PGC-1α. This interaction elevated the expression of CPT1, a shuttle for the mitochondrial transport of fatty acids, in kinsenoside-treated cells. In addition, AMPK-phosphorylation-mediated CREB activation caused kinsenoside-mediated PGC-1α upregulation. CONCLUSION AMPK activation not only elevated ATGL expression for lipolysis but also induced CPT1 expression for further mitochondrial translocation of fatty acids. The results suggested that the mechanism underlying the catabolic effects of kinsenoside on lipolysis and increased CPT1 induction was mediated through an AMPK-dependent pathway.
Journal of Proteomics | 2011
Ching Wu Hsia; Hao Ai Shui; Chih-Yuan Wang; Ming Yi Ho; Kur Ta Cheng; Min-Jen Tseng
Dermal papilla cells (DPCs) control the development of hair follicles via cell-cell interactions and extracellular molecules. Colchicine affected active anagen DPCs to result in hair loss in the clinical setting. The purpose of this study was to identify the retro-modulator released by DPCs exposed to sub-toxic dose of colchicine and elucidate its effect on dermal papilla culture. The molecular-weight cutoff ultrafiltration and HPLC were used to purify the components of colchicine-treated DPC secretomes and examined their ability to down-regulate the growth and alkaline phosphatase (ALP) activity of DPCs. The active product was identified by in-gel trypsin digestion, nano-LC-ESI-MS/MS and validated by Western blot to be histone H4 (P62804), which inhibited the proliferation and diminished the ALP activity of cultured DPCs. Treating DPCs with recombinant histone H4 reproduced the growth inhibition effect whereas adding antibody to immunoneutralize histone H4 abolished this growth inhibitory consequence. DPCs with high ALP activity can induce the neogenesis of hair follicles and support the hair fiber growth in vivo. Our results indicated that sub-lethal colchicine can inactivate DPCs through releasing histone H4. Through the investigation of the retro-modulation of histone H4 on dermal papillae may give implications for understanding the mechanism of colchicine-induced hair disorder.