Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kurnia Lahna is active.

Publication


Featured researches published by Kurnia Lahna.


Applied Spectroscopy | 2001

Detection of Density Jump in Laser-Induced Shock Wave Plasma Using A Rainbow Refractometer

Hendrik Kurniawan; Kurnia Lahna; Tjung Jie Lie; Kiichiro Kagawa; May On Tjia

A special interferometric technique with high sensitivity has been devised on the basis of rainbow refractometry without the use of an additional and delicate amplitude-splitting setup. This new technique was used for the characterization of shock wave plasma induced by a Q-switched Nd:YAG laser on various metal samples under reduced surrounding gas pressures. An unmistakable signal of the density jump was detected simultaneously with the observation of the emission front signal. It proved that the emission front and the front of the blast wave coincided and moved together with time at the initial stage of the secondary plasma expansion. However, at a later stage, the emission front began to separate from and left behind the blast wave front propagating in the surrounding gas at low pressures. With the use of Cu and Zn samples, the experimental results showed that the separation of the emission front and blast wave front took place at about 5 mm above sample surface for laser energy of 140 mJ.


Journal of Applied Physics | 2009

The role of He in enhancing the intensity and lifetime of H and D emissions from laser-induced atmospheric-pressure plasma

Koo Hendrik Kurniawan; Tjung Jie Lie; Maria Margaretha Suliyanti; Rinda Hedwig; Marincan Pardede; Muliadi Ramli; Hideaki Niki; Syahrun Nur Abdulmadjid; Nasrullah Idris; Kurnia Lahna; Yoshihumi Kusumoto; Kiichiro Kagawa; May On Tjia

A series of measurements have been performed on the time dependences of the intensities of helium, hydrogen, and deuterium emission lines from the corresponding laser-induced helium plasma at atmospheric pressure for two different He flow rates. The prolonged Hα and Hβ emissions along with their constant intensity ratio over a relatively extended period indicate the need to provide an alternative excitation mechanism other than the well-known thermal excitation process in a hot plasma. This additional excitation mechanism is also related to the metastable excited state of a He atom as indicated by the similar characteristics of the observed time dependence of the emission intensities. The enhanced intensity and lifetime of He emission at a high He flow rate was explained in terms of the collision-induced increase in the number of He atoms excited to above the 2 S10 metastable state, which was also responsible for the delayed excitation of H and D atoms via an energy transfer mechanism involving a Penning-...


Journal of Applied Physics | 2009

Intensity distributions of enhanced H emission from laser-induced low-pressure He plasma and a suggested He-assisted excitation mechanism

Zener Sukra Lie; Marincan Pardede; Rinda Hedwig; Maria Margaretha Suliyanti; Eden Steven; Maliki; Koo Hendrik Kurniawan; Muliadi Ramli; Syahrun Nur Abdulmadjid; Nasrullah Idris; Kurnia Lahna; Kiichiro Kagawa; May On Tjia

An experimental study was conducted on the spatial distributions of hydrogen emission intensities from low-pressure plasmas generated by laser ablation of zircaloy-4 and black stone targets in nitrogen and helium ambient gases. In addition to confirming the previously observed intensity enhancement effect in ambient helium gas, the hydrogen and helium emission intensities measured along the plasma expansion direction revealed remarkable extended spatial distributions featuring unexpected maxima near the far end of the plasma where the available shock-wave generated thermal excitation energy should have been significantly reduced. This “anomalous” feature necessarily implied the presence of an additional excitation process beside the well known shock-wave excitation process which is responsible for the plasma emission of heavy atoms in low-pressure ambient gas. Further analysis of the data led to a suggested physical mechanism explaining the possible contribution of a helium metastable excited state to the...


Journal of Applied Physics | 2015

Quantitative and sensitive analysis of CN molecules using laser induced low pressure He plasma

Marincan Pardede; Rinda Hedwig; Syahrun Nur Abdulmadjid; Kurnia Lahna; Nasrullah Idris; Eric Jobiliong; Hery Suyanto; Alion Mangasi Marpaung; Maria Margaretha Suliyanti; Muliadi Ramli; May On Tjia; Tjung Jie Lie; Zener Sukra Lie; Davy Putra Kurniawan; Koo Hendrik Kurniawan; Kiichiro Kagawa

We report the results of experimental study on CN 388.3 nm and C I 247.8 nm emission characteristics using 40 mJ laser irradiation with He and N2 ambient gases. The results obtained with N2 ambient gas show undesirable interference effect between the native CN emission and the emission of CN molecules arising from the recombination of native C ablated from the sample with the N dissociated from the ambient gas. This problem is overcome by the use of He ambient gas at low pressure of 2 kPa, which also offers the additional advantages of cleaner and stronger emission lines. The result of applying this favorable experimental condition to emission spectrochemical measurement of milk sample having various protein concentrations is shown to yield a close to linear calibration curve with near zero extrapolated intercept. Additionally, a low detection limit of 5 μg/g is found in this experiment, making it potentially applicable for quantitative and sensitive CN analysis. The visibility of laser induced breakdown spectroscopy with low pressure He gas is also demonstrated by the result of its application to spectrochemical analysis of fossil samples. Furthermore, with the use of CO2 ambient gas at 600 Pa mimicking the Mars atmosphere, this technique also shows promising applications to exploration in Mars.


Journal of Applied Physics | 2015

Excitation mechanisms in 1 mJ picosecond laser induced low pressure He plasma and the resulting spectral quality enhancement

Nasrullah Idris; Kurnia Lahna; Syahrun Nur Abdulmadjid; Muliadi Ramli; Hery Suyanto; Alion Mangasi Marpaung; Marincan Pardede; Eric Jobiliong; Rinda Hedwig; Maria Margaretha Suliyanti; Zener Sukra Lie; Tjung Jie Lie; Kiichiro Kagawa; May On Tjia; Koo Hendrik Kurniawan

We report in this paper the results of an experimental study on the spectral and dynamical characteristics of plasma emission induced by 1 mJ picoseconds (ps) Nd-YAG laser using spatially resolved imaging and time resolved measurement of the emission intensities of copper sample. This study has provided the experimental evidence concerning the dynamical characteristics of the excitation mechanisms in various stages of the plasma formation, which largely consolidate the basic scenarios of excitation processes commonly accepted so far. However, it is also clearly shown that the duration of the shock wave excitation process induced by ps laser pulses is much shorter than those observed in laser induced breakdown spectroscopy employing nanosecond laser at higher output energy. This allows the detection of atomic emission due exclusively to He assisted excitation in low pressure He plasma by proper gating of the detection time. Furthermore, the triplet excited state associated with He I 587.6 nm is shown to be...


Journal of Physics: Conference Series | 2017

Study on Emission Spectral Lines of Iron, Fe in Laser-Induced Breakdown Spectroscopy (LIBS) on Soil Samples

Nasrullah Idris; Kurnia Lahna; Fadhli; Muliadi Ramli

In this work, LIBS technique has been used for detection of heavy metal especially iron, Fe in soil sample. As there are a large number of emission spectral lines due to Fe and other constituents in soil, this study is intended to identify emission spectral lines of Fe and finally to find best fit emission spectral lines for carrying out a qualitative and quantitative analysis. LIBS apparatus used in this work consists of a laser system (Neodymium Yttrium Aluminum Garnet, Nd-YAG: Quanta Ray; LAB SERIES; 1,064 nm; 500 mJ; 8 ns) and an optical multichannel analyzer (OMA) system consisting of a spectrograph (McPherson model 2061; 1,000 mm focal length; f/8.6 Czerny- Turner) and an intensified charge coupled device (ICCD) 1024x256 pixels (Andor I*Star). The soil sample was collected from Banda Aceh city, Aceh, Indonesia. For spectral data acquisition, the soil sample has been prepared by a pressing machine in the form of pellet. The laser beam was focused using a high density lens (f=+150 mm) and irradiated on the surface of the pellet for generating luminous plasma under 1 atmosphere of air surrounding. The plasma emission was collected by an optical fiber and then sent to the optical multichannel analyzer (OMA) system for acquisition of the emission spectra. It was found that there are many Fe emission lines both atomic lines (Fe I) and ionic lines (Fe II) appeared in all detection windows in the wavelength regions, ranging from 200 nm to 1000 nm. The emission lines of Fe with strong intensities occurs together with emission lines due to other atoms such as Mg, Ca, and Si. Thus, the identification of emission lines from Fe is complicated by presence of many other lines due to other major and minor elements in soil. Considering the features of the detected emission lines, several emission spectral lines of Fe I (atomic emission line), especially Fe I 404.58 nm occurring at visible range are potential to be good candidate of analytical lines in relation to detection heavy metal pollution, Fe, in soil sample.


Journal of Applied Physics | 2016

Evidence of feasible hardness test on Mars using ratio of ionic/neutral emission intensities measured with laser-induced breakdown spectroscopy in low pressure CO2 ambient gas

Syahrun Nur Abdulmadjid; Marincan Pardede; Hery Suyanto; Muliadi Ramli; Kurnia Lahna; Alion Mangasi Marpaung; Rinda Hedwig; Zener Sukra Lie; Davy Putra Kurniawan; Koo Hendrik Kurniawan; Tjung Jie Lie; Nasrullah Idris; May On Tjia; Kiichiro Kagawa

An experimental study is conducted on the possibility and viability of performing hardness measurement of the various stone and chert samples in low pressure (600 Pa) CO2 ambient gas, a condition that is encountered in the Mars atmosphere. For this study, a nanosecond Nd-YAG laser is employed to generate plasma emission from the samples with different degrees of hardness. This technique is developed in light of the role of the shock wave in the generation of a laser-induced plasma. It was previously shown that the speed of the shock front depends on the hardness of the sample, and a positive relationship was found between the speed of the shock front and the ionization rate of the ablated atoms. Hence, the ratio of the intensity between the Mg II 279.5 nm and Mg I 285.2 nm emission lines detected from the laser-induced plasma can be used to estimate the hardness of a material. In fact, it is shown that the ratio changes linearly with respect to changes of sample hardness. The result has thus demonstrated ...


THE 4TH INTERNATIONAL CONFERENCE ON THEORETICAL AND APPLIED PHYSICS (ICTAP) 2014 | 2016

The use of laser-induced shock wave plasma spectroscopy (LISPS) for examining physical characteristics of pharmaceutical products

Syahrun Nur Abdulmadjid; Kurnia Lahna; Lydia Septa Desiyana

An experimental study has been performed to examine the physical characteristics of pharmaceutical products, such as tablet, by employing an emission plasma induced by Nd-YAG laser at a low pressure of Helium gas. The hardness of tablet is one of the parameters that examined during the production process for standard quality of pharmaceutical products. In the Laser-Induced Shock Wave Plasma Spectroscopy (LISPS), the shock wave has a significant role in inducing atomic excitation. It was known that, the speed of the shock wavefront depends on the hardness of the sample, and it correlates with the ionization rate of the ablated atoms. The hardness of the tablet is examined using the intensity ratio between the ion of Mg (II) 275.2 nm and the neutral of Mg (I) 285.2 nm emission lines detected from the laser-induced plasma. It was observed that the ratio changes with respect to the change in the tablet hardness, namely the ratio is higher for the hard tablet. Besides the ratio measurements, we also measured the depth profile of a tablet by focusing 60 shots of irradiation of laser light at a fixed position on the surface of the tablet. It was found that the depth profile varies differently with the hardness of the tablet. These experiment results show that the technique of LISPS can be applied to examine the quality of pharmaceutical products.An experimental study has been performed to examine the physical characteristics of pharmaceutical products, such as tablet, by employing an emission plasma induced by Nd-YAG laser at a low pressure of Helium gas. The hardness of tablet is one of the parameters that examined during the production process for standard quality of pharmaceutical products. In the Laser-Induced Shock Wave Plasma Spectroscopy (LISPS), the shock wave has a significant role in inducing atomic excitation. It was known that, the speed of the shock wavefront depends on the hardness of the sample, and it correlates with the ionization rate of the ablated atoms. The hardness of the tablet is examined using the intensity ratio between the ion of Mg (II) 275.2 nm and the neutral of Mg (I) 285.2 nm emission lines detected from the laser-induced plasma. It was observed that the ratio changes with respect to the change in the tablet hardness, namely the ratio is higher for the hard tablet. Besides the ratio measurements, we also measured t...


Japanese Journal of Applied Physics | 2016

A comparative study of emission efficiencies in low-pressure argon plasmas induced by picosecond and nanosecond Nd:YAG lasers

Alion Mangasi Marpaung; Muliadi Ramli; Rinaldi Idroes; Hery Suyanto; Kurnia Lahna; Syahrun Nur Abdulmadjid; Nasrullah Idris; Marincan Pardede; Rinda Hedwig; Zener Sukra Lie; Davy Putra Kurniawan; Koo Hendrik Kurniawan; Tjung Jie Lie; May On Tjia; Kiichiro Kagawa

An experimental study is performed on the comparative advantages of nanosecond (ns) and picosecond (ps) lasers in laser-induced breakdown spectroscopy (LIBS) analysis. The experiment focused on the relative efficiencies of the plasma emission induced by the two lasers in low-pressure Ar ambient gas for samples of various hardnesses. It is shown that the emission intensities are consistenly reduced when the ns laser is replaced by the ps laser. This is explained as the consequence of the increased power density delivered by the ps laser, which results in a time mismatch between the passage of the ablated atoms and the formation of the shock wave. The time mismatch in turn leads to less effective thermal excitation by the shock wave plasma and the hence reduced emission intensity. Furthermore, this adverse effect is found to worsen for softer samples due to the slower formation of the shock wave. These results are obtained with the same volumes of craters produced by the two lasers on the same sample, which implies that ns laser irradiation has higher emission efficiency than ps laser irradiation.


Applied Optics | 2016

Formation and emission characteristics of CN molecules in laser induced low pressure He plasma and its applications to N analysis in coal and fossilization study.

Kurnia Lahna; Rinaldi Idroes; Nasrullah Idris; Syahrun Nur Abdulmadjid; Koo Hendrik Kurniawan; May On Tjia; Marincan Pardede; Kiichiro Kagawa

Presented in this paper are the results of an experimental study on the laser induced plasma emission of a number of CN free samples (urea, sucrose) with 40 mJ pulse energy using He and N₂ ambient gases. It is shown that the CN emission has its exclusive sources in the molecules produced as the result of chemical bonding either between the ablated C and N ions in the He plasma or between the ablated C and dissociated N from the N₂ ambient gas. The emission intensities in both cases are found to have the highest values at the low gas pressure of 2 kPa. The emission in He gas is shown to exhibit the typical characteristics related to a shockwave generated excitation mechanism. The experiments using He ambient gas further demonstrate the feasible laser-induced breakdown spectroscopy application to quantitative and sensitive N analysis of coal and promising application for practical in situ carbon dating of fossils.

Collaboration


Dive into the Kurnia Lahna's collaboration.

Top Co-Authors

Avatar

May On Tjia

Bandung Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marincan Pardede

University of Pelita Harapan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge