Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kurosch Rezwan is active.

Publication


Featured researches published by Kurosch Rezwan.


Acta Biomaterialia | 2013

Functionalized ceramics for biomedical, biotechnological and environmental applications

Laura Treccani; Tanja Yvonne Klein; Fabian Meder; Karoline Pardun; Kurosch Rezwan

Surface functionalization has become of paramount importance and is considered a fundamental tool for the development and design of countless devices and engineered systems for key technological areas in biomedical, biotechnological and environmental applications. In this review, surface functionalization strategies for alumina, zirconia, titania, silica, iron oxide and calcium phosphate are presented and discussed. These materials have become particularly important concerning the aforementioned applications, being not only of great academic, but also of steadily increasing human and commercial, interest. In this review, special emphasis is given to their use as biomaterials, biosensors, biological targets, drug delivery systems, implants, chromatographic supports for biomolecule purification and analysis, and adsorbents for toxic substances and pollutants. The objective of this review is to provide a broad picture of the enormous possibilities offered by surface functionalization and to identify particular challenges regarding surface analysis and characterization.


Acta Biomaterialia | 2012

Protein adsorption on colloidal alumina particles functionalized with amino, carboxyl, sulfonate and phosphate groups.

Fabian Meder; Timo Daberkow; Laura Treccani; Michaela Wilhelm; Marco Schowalter; A. Rosenauer; Lutz Mädler; Kurosch Rezwan

Colloidal oxide particles in biomedical or biotechnological applications immediately become coated with proteins of the biological medium, a process which is strongly influenced by the surface characteristics of the particles. Fundamental correlations between surface characteristics and the, so far mainly uncontrollable, protein adsorption are still not clear. In this study the surface of colloidal alumina particles (d(50)=179 ± 8 nm) was systematically adjusted with NH(2), COOH, SO(3)H and PO(3)H(2) functional groups to investigate the influence on the adsorption of the three model proteins, bovine serum albumin (BSA), lysozyme (LSZ) and trypsin (TRY). The surface functionalization is characterized and discussed in detail with regard to the morphology, isoelectric point, zeta potential, hydrophilic/hydrophobic properties, functional group density and stability. Protein-particle interaction was then assessed by evaluating the amount of protein adsorbed and the zeta potentials of protein-particle conjugates. Protein adsorption was found to be influenced by the type of functional group as well as the expected electrostatic forces under the given experimental conditions. The level of protein adsorption might, hence, be specifically controlled by the type of surface functionalization. Possible adsorption modes of BSA, LSZ and TRY on the particles are suggested by considering the spatial surface potential distribution of the proteins calculated from the protein database file. The particles presented provide an excellent prerequisite for further investigation of fundamental particle-protein interactions and the design of functionally graded materials for biomedical and biotechnological applications, e.g. as drug carriers or for protein purification.


ACS Nano | 2014

Bactericidal Activity of Partially Oxidized Nanodiamonds

Julia Wehling; Ralf Dringen; Richard N. Zare; Michael Maas; Kurosch Rezwan

Nanodiamonds are a class of carbon-based nanoparticles that are rapidly gaining attention, particularly for biomedical applications, i.e., as drug carriers, for bioimaging, or as implant coatings. Nanodiamonds have generally been considered biocompatible with a broad variety of eukaryotic cells. We show that, depending on their surface composition, nanodiamonds kill Gram-positive and -negative bacteria rapidly and efficiently. We investigated six different types of nanodiamonds exhibiting diverse oxygen-containing surface groups that were created using standard pretreatment methods for forming nanodiamond dispersions. Our experiments suggest that the antibacterial activity of nanodiamond is linked to the presence of partially oxidized and negatively charged surfaces, specifically those containing acid anhydride groups. Furthermore, proteins were found to control the bactericidal properties of nanodiamonds by covering these surface groups, which explains the previously reported biocompatibility of nanodiamonds. Our findings describe the discovery of an exciting property of partially oxidized nanodiamonds as a potent antibacterial agent.


Nanotechnology | 2011

Uptake of dimercaptosuccinate-coated magnetic iron oxide nanoparticles by cultured brain astrocytes

Mark Geppert; Michaela C. Hohnholt; Karsten Thiel; Sylvia Nürnberger; Ingo Grunwald; Kurosch Rezwan; Ralf Dringen

Magnetic iron oxide nanoparticles (Fe-NP) are currently considered for various diagnostic and therapeutic applications in the brain. However, little is known on the accumulation and biocompatibility of such particles in brain cells. We have synthesized and characterized dimercaptosuccinic acid (DMSA) coated Fe-NP and have investigated their uptake by cultured brain astrocytes. DMSA-coated Fe-NP that were dispersed in physiological medium had an average hydrodynamic diameter of about 60 nm. Incubation of cultured astrocytes with these Fe-NP caused a time- and concentration-dependent accumulation of cellular iron, but did not lead within 6 h to any cell toxicity. After 4 h of incubation with 100-4000 µM iron supplied as Fe-NP, the cellular iron content reached levels between 200 and 2000 nmol mg⁻¹ protein. The cellular iron content after exposure of astrocytes to Fe-NP at 4 °C was drastically lowered compared to cells that had been incubated at 37 °C. Electron microscopy revealed the presence of Fe-NP-containing vesicles in cells that were incubated with Fe-NP at 37 °C, but not in cells exposed to the nanoparticles at 4 °C. These data demonstrate that cultured astrocytes efficiently take up DMSA-coated Fe-NP in a process that appears to be saturable and strongly depends on the incubation temperature.


Langmuir | 2010

Control of α-Alumina Surface Charge with Carboxylic Acids

Sergio Bertazzo; Kurosch Rezwan

In this work, we studied the surface charge of alpha-alumina treated with carboxylic acids with different carbon chain length. The results show the possibility of controlling surface charges of alumina by using different concentrations of carboxylic acids or changing the size of the carbon chain of the acids. We also report that part of the acid found on the surface is strongly bound, therefore making it possible to obtain pH-resistant samples of alpha-alumina with an isoelectric point (IEP) of 5.5. It is found, that IEP values obtained for modified samples have a linear correlation with the number of carbon atoms of dicarboxylic acids for up to five carbon atoms. From a practical perspective, the method presented in this work has many advantages. First, it maintains the same hydrophilicity of the alumina surface. Second, the modification of the surface is stable in a long-range of pH. Finally, the presented method is easy-to-use and cheap, as the modification consists of only two simple steps carried out at low temperatures with inexpensive and nontoxic reagents.


Chemosphere | 2013

Changes in zeta potential of imidazolium ionic liquids modified minerals - Implications for determining mechanism of adsorption

Wojciech Mrozik; Kurosch Rezwan; Jorg Thöming; Jan Hupka; Christian Jungnickel

As the amount of industrial processes involving ionic liquids (ILs) increase the question of their environmental fate awaits an answer. Should ILs become a source of pollution they will primarily be found in soils and water. Interaction of imidazolium IL with soils is a complex interplay of many parameters making predicting their fate and mobility a challenging task. In order to shed more light on the mechanism of adsorption in soils we examined the interactions of imidazolium ILs with the major component of soils, namely mineral fraction. Within this work adsorption on kaolinite and quartz was investigated in terms of adsorption isotherms, partition coefficients and changes of zeta potentials of clays modified by ILs aggregates. The zeta potential was found to be dependent on the alkyl chain length of the imidazolium homologues. It can therefore be concluded that although adsorption seems to rely on electrostatic attraction, at least in the initial stage, the hydrophobicity of molecules is just as significant.


Acta Biomaterialia | 2012

Orientation of human osteoblasts on hydroxyapatite-based microchannels.

Marzellus große Holthaus; J. Stolle; Laura Treccani; Kurosch Rezwan

The effect of calcium phosphate-based microchannels on the growth and orientation of human osteoblast cells is investigated in this study. As substrates, hydroxyapatite-based microchannels with high contouring accuracy were fabricated by a novel micro-moulding technique. Microchannels obtained by this method featured widths ranging from 16.0±0.7 to 76.6±1.4 μm and depths from 7.9±0.8 to 15.5±1.3 μm. Surface and contour characterization was carried out using X-ray diffraction analysis, scanning electron microscopy imaging and 3D-confocal profilometry. Cell activity and alignment on microchannels with different widths were determined after 1 and 3 days by photometric spectroscopy and fluorescence microscopic imaging and statistically analysed by Tukeys multiple comparison test. On days 1 and 3 for microchannels of width 16 and 30 μm, 70-80% of the osteoblasts oriented within an angular range of 0-15° relative to the microchannel direction. Interestingly, only 20% of the cells grew inside the microchannels for channel widths of 16 and 30 μm. Substrates with channel widths of 45, 65 and 76 μm allowed ∼40% of the cells to grow inside. The depth of the microchannel showed hardly any significant impact. All micropatterned surfaces provoked a good cell attachment, as flat and spread cell morphologies with lamellipodiae and filopodiae could already be observed after 1 day. The effect of the microchannels on osteoblast activity was determined using the colorimetric WST-1 assay. In addition, the cell differentiation was assessed by collagen type I staining. The cell activity obtained by WST-1 assay differed insignificantly for all micropatterned samples of various widths and depths. The assessment of collagen type I yielded the same amounts for all micropatterned samples after 1, 3 and 7 days. In summary, the microchannel width of HA-based patterns has a distinct effect on the directed growth of human osteoblast cells, allowing novel design strategies for surfaces such as dental implants.


Angewandte Chemie | 2015

Bifunctional Submicron Colloidosomes Coassembled from Fluorescent and Superparamagnetic Nanoparticles

Tobias Bollhorst; Shakiba Shahabi; Katharina Wörz; Charlotte Petters; Ralf Dringen; Michael Maas; Kurosch Rezwan

Colloidosomes are microcapsules consisting of nanoparticle shells. These microcarriers can be self-assembled from a wide range of colloidal particles with selective chemical, physical, and morphological properties and show promise for application in the field of theranostic nanomedicine. Previous studies have mainly focused on fairly large colloidosomes (>1 μm) based on a single kind of particle; however, the intrinsic building-block nature of this microcarrier has not been exploited so far for the introduction of tailored functionality at the nanoscale. We report a synthetic route based on interfacial shear rheology studies that allows the simultaneous incorporation of different nanoparticles with distinct physical properties, that is, superparamagnetic iron oxide and fluorescent silica nanoparticles, in a single submicron colloidosome. These tailor-made microcapsules can potentially be used in various biomedical applications, including magnetic hyperthermia, magnetic particle imaging, drug targeting, and bioimaging.


ACS Applied Materials & Interfaces | 2015

Modulation of Silica Nanoparticle Uptake into Human Osteoblast Cells by Variation of the Ratio of Amino and Sulfonate Surface Groups: Effects of Serum

Shakiba Shahabi; Laura Treccani; Ralf Dringen; Kurosch Rezwan

To study the importance of the surface charge for cellular uptake of silica nanoparticles (NPs), we synthesized five different single- or multifunctionalized fluorescent silica NPs (FFSNPs) by introducing various ratios of amino and sulfonate groups into their surface. The zeta potential values of these FFSNPs were customized from highly positive to highly negative, while other physicochemical properties remained almost constant. Irrespective of the original surface charge, serum proteins adsorbed onto the surface, neutralized the zeta potential values, and prevented the aggregation of the tailor-made FFSNPs. Depending on the surface charge and on the absence or presence of serum, two opposite trends were found concerning the cellular uptake of FFSNPs. In the absence of serum, positively charged NPs were more strongly accumulated by human osteoblast (HOB) cells than negatively charged NPs. In contrast, in serum-containing medium, anionic FFSNPs were internalized by HOB cells more strongly, despite the similar size and surface charge of all types of protein-covered FFSNPs. Thus, at physiological condition, when the presence of proteins is inevitable, sulfonate-functionalized silica NPs are the favorite choice to achieve a desired high rate of NP internalization.


Acta Biomaterialia | 2013

Controlling protein-particle adsorption by surface tailoring colloidal alumina particles with sulfonate groups.

Fabian Meder; Christoph Brandes; Laura Treccani; Kurosch Rezwan

In this study, we demonstrate the control of protein adsorption by tailoring the sulfonate group density on the surface of colloidal alumina particles. The colloidal alumina (d(50)=179±8nm) is first accurately functionalized with sulfonate groups (SO(3)H) in densities ranging from 0 to 4.7SO(3)H nm(-2). The zeta potential, hydrophilic/hydrophobic properties, particle size, morphology, surface area and elemental composition of the functionalized particles are assessed. The adsorption of three model proteins, bovine serum albumin (BSA), lysozyme (LSZ) and trypsin (TRY), is then investigated at pH 6.9±0.3 and an ionic strength of 3mM. Solution depletion and zeta potential experiments show that BSA, LSZ and TRY adsorption is strongly affected by the SO(3)H surface density rather than by the net zeta potential of the particles. A direct correlation between the SO(3)H surface density, the intrinsic protein amino acid composition and protein adsorption is observed. Thus a continuous adjustment of the protein adsorption amount can be achieved between almost no coverage and a theoretical monolayer by varying the density of SO(3)H groups on the particle surface. These findings enable a deeper understanding of protein-particle interactions and, moreover, support the design and engineering of materials for specific biotechnology, environmental technology or nanomedicine applications.

Collaboration


Dive into the Kurosch Rezwan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dietmar Koch

German Aerospace Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge