Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kurt A. Spokas is active.

Publication


Featured researches published by Kurt A. Spokas.


Journal of Environmental Quality | 2012

Biochar: A Synthesis of Its Agronomic Impact beyond Carbon Sequestration

Kurt A. Spokas; Keri B. Cantrell; Jeffrey M. Novak; David W. Archer; James A. Ippolito; Harold P. Collins; Akwasi A. Boateng; Isabel M. Lima; Marshall C. Lamb; Andrew McAloon; Rodrick D. Lentz; Kristine Nichols

Biochar has been heralded as an amendment to revitalize degraded soils, improve soil carbon sequestration, increase agronomic productivity, and enter into future carbon trading markets. However, scientific and economic technicalties may limit the ability of biochar to consistently deliver on these expectations. Past research has demonstrated that biochar is part of the black carbon continuum with variable properties due to the net result of production (e.g., feedstock and pyrolysis conditions) and postproduction factors (storage or activation). Therefore, biochar is not a single entity but rather spans a wide range of black carbon forms. Biochar is black carbon, but not all black carbon is biochar. Agronomic benefits arising from biochar additions to degraded soils have been emphasized, but negligible and negative agronomic effects have also been reported. Fifty percent of the reviewed studies reported yield increases after black carbon or biochar additions, with the remainder of the studies reporting alarming decreases to no significant differences. Hardwood biochar (black carbon) produced by traditional methods (kilns or soil pits) possessed the most consistent yield increases when added to soils. The universality of this conclusion requires further evaluation due to the highly skewed feedstock preferences within existing studies. With global population expanding while the amount of arable land remains limited, restoring soil quality to nonproductive soils could be key to meeting future global food production, food security, and energy supplies; biochar may play a role in this endeavor. Biochar economics are often marginally viable and are tightly tied to the assumed duration of agronomic benefits. Further research is needed to determine the conditions under which biochar can provide economic and agronomic benefits and to elucidate the fundamental mechanisms responsible for these benefits.


Chemosphere | 2009

Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil

Kurt A. Spokas; William C. Koskinen; John M. Baker; D.C. Reicosky

A potential abatement to increasing levels of carbon dioxide (CO(2)) in the atmosphere is the use of pyrolysis to convert vegetative biomass into a more stable form of carbon (biochar) that could then be applied to the soil. However, the impacts of pyrolysis biochar on the soil system need to be assessed before initiating large scale biochar applications to agricultural fields. We compared CO(2) respiration, nitrous oxide (N(2)O) production, methane (CH(4)) oxidation and herbicide retention and transformation through laboratory incubations at field capacity in a Minnesota soil (Waukegan silt loam) with and without added biochar. CO(2) originating from the biochar needs to be subtracted from the soil-biochar combination in order to elucidate the impact of biochar on soil respiration. After this correction, biochar amendments reduced CO(2) production for all amendment levels tested (2, 5, 10, 20, 40 and 60% w/w; corresponding to 24-720 tha(-1) field application rates). In addition, biochar additions suppressed N(2)O production at all levels. However, these reductions were only significant at biochar amendment levels >20% w/w. Biochar additions also significantly suppressed ambient CH(4) oxidation at all levels compared to unamended soil. The addition of biochar (5% w/w) to soil increased the sorption of atrazine and acetochlor compared to non-amended soils, resulting in decreased dissipation rates of these herbicides. The recalcitrance of the biochar suggests that it could be a viable carbon sequestration strategy, and might provide substantial net greenhouse gas benefits if the reductions in N(2)O production are lasting.


Carbon Management | 2010

Review of the stability of biochar in soils: predictability of O:C molar ratios

Kurt A. Spokas

Biochar is not a structured homogeneous material; rather it possesses a range of chemical structures and a heterogeneous elemental composition. This variability is based on the conditions of pyrolysis and the biomass parent material, with biochar spanning the range of various forms of black carbon. Thereby, this variability induces a broad spectrum in the observed rates of reactivity and, correspondingly, the overall chemical and microbial stability. From evaluating the current biochar and black carbon degradation studies, there is the suggestion of an overall relationship in biochar stability as a function of the molar ratio of oxygen to carbon (O:C) in the resulting black carbon. In general, a molar ratio of O:C lower than 0.2 appears to provide, at minimum, a 1000-year biochar half-life. The O:C ratio is a function of production temperature, but also accounts for other impacts (e.g., parent material and post-production conditioning/oxidation) that are not captured solely with production temperature. Therefore, the O:C ratio could provide a more robust indicator of biochar stability than production parameters (e.g., pyrolysis temperature and biomass type) or volatile matter determinations.


Waste Management & Research | 2009

Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions

Charlotte Scheutz; Peter Kjeldsen; Jean E. Bogner; Alex De Visscher; Julia Gebert; Helene Hilger; Marion Huber-Humer; Kurt A. Spokas

Landfill gas containing methane is produced by anaerobic degradation of organic waste. Methane is a strong greenhouse gas and landfills are one of the major anthropogenic sources of atmospheric methane. Landfill methane may be oxidized by methanotrophic microorganisms in soils or waste materials utilizing oxygen that diffuses into the cover layer from the atmosphere. The methane oxidation process, which is governed by several environmental factors, can be exploited in engineered systems developed for methane emission mitigation. Mathematical models that account for methane oxidation can be used to predict methane emissions from landfills. Additional research and technology development is needed before methane mitigation technologies utilizing microbial methane oxidation processes can become commercially viable and widely deployed.


Chemosphere | 2011

Qualitative analysis of volatile organic compounds on biochar

Kurt A. Spokas; Jeffrey M. Novak; Catherine E. Stewart; Keri B. Cantrell; Minori Uchimiya; Martin G. DuSaire; Kyoung S. Ro

Qualitative identification of sorbed volatile organic compounds (VOCs) on biochar was conducted by headspace thermal desorption coupled to capillary gas chromatographic-mass spectrometry. VOCs may have a mechanistic role influencing plant and microbial responses to biochar amendments, since VOCs can directly inhibit/stimulate microbial and plant processes. Over 70 biochars encompassing a variety of parent feedstocks and manufacturing processes were evaluated and were observed to possess diverse sorbed VOC composition. There were over 140 individual chemical compounds thermally desorbed from some biochars, with hydrothermal carbonization (HTC) and fast pyrolysis biochars typically possessing the greatest number of sorbed volatiles. In contrast, gasification, thermal or chemical processed biochars, soil kiln mound, and open pit biochars possessed low to non-detectable levels of VOCs. Slow pyrolysis biochars were highly variable in terms of their sorbed VOC content. There were no clear feedstock dependencies to the sorbed VOC composition, suggesting a stronger linkage with biochar production conditions coupled to post-production handling and processing. Lower pyrolytic temperatures (⩽350°C) produced biochars with sorbed VOCs consisting of short carbon chain aldehydes, furans and ketones; elevated temperature biochars (>350°C) typically were dominated by sorbed aromatic compounds and longer carbon chain hydrocarbons. The presence of oxygen during pyrolysis also reduced sorbed VOCs. These compositional results suggest that sorbed VOCs are highly variable and that their chemical dissimilarity could play a role in the wide variety of plant and soil microbial responses to biochar soil amendment noted in the literature. This variability in VOC composition may argue for VOC characterization before land application to predict possible agroecosystem effects.


Plant and Soil | 2010

Ethylene: potential key for biochar amendment impacts

Kurt A. Spokas; John M. Baker; Donald C. Reicosky

Significant increases in root density, crop growth and productivity have been observed following soil additions of biochar, which is a solid product from the pyrolysis of biomass. In addition, alterations in the soil microbial dynamics have been observed following biochar amendments, with decreased carbon dioxide (CO2) respiration, suppression of methane (CH4) oxidation and reduction of nitrous oxide (N2O) production. However, there has not been a full elucidation of the mechanisms behind these effects. Here we show data on ethylene production that was observed from biochar and biochar-amended soil. Ethylene is an important plant hormone as well as an inhibitor for soil microbial processes. Our current hypothesis is that the ethylene is biochar derived, with a majority of biochars exhibiting ethylene production even without soil or microbial inoculums. There was increased ethylene production from non-sterile compared to sterile soil (215%), indicating a role of soil microbes in the observed ethylene production. Production varied with different biomass sources and production conditions. These observations provide a tantalizing insight into a potential mechanism behind the biochar effects observed, particularly in light of the important role ethylene plays in plant and microbial processes.


Chemosphere | 1995

LANDFILLS AS ATMOSPHERIC METHANE SOURCES AND SINKS

Jean E. Bogner; Kurt A. Spokas; E. Burton; R. Sweeney; V. Corona

Abstract Sanitary landfills are recognized as globally significant sources of atmospheric methane, but field measurements are rare. Existing country-specific landfill emissions have been estimated from solid waste statistics and a series of assumptions regarding methane generation and emission rates. There has been no attempt to reconcile the national and global estimates with limited field data on landfill methane emissions which range over six orders of magnitude (Bogner and Scott, 1995). This paper addresses controlled field measurements of methane emissions at sites in Illinois and California (USA) using a closed chamber technique. Overall, observed rates from various controlled monitoring experiments during 1988–1994 ranged from 0.003 to more than 1000 g CH 4 m −2 d −1 . Rates were related to the presence or absence of gas recovery wells, physical properties of cover soils (texture, moisture, and temperature) relating to their aeration status for diffusional flux, and rates of methane oxidation by indigenous methanotrophs. Surprisingly, at the Illinois site during spring, 1994, the landfill surface was consuming atmospheric methane rather than emitting landfill methane. This was attributed to high capacities for methane oxidation in well-aerated soils which had reduced landfill methane compared to 1993, the result of an effective pumped gas recovery system. Three independent methods confirmed that the landfill cover soils were functioning as a methane sink: (a) static closed chamber measurements yielding negative flux rates (uptake of atmospheric methane); (b) rates of methane oxidation similar to chamber results from in vitro field incubation studies using ambient methane; and (c) a reversal in the soil gas methane concentration gradient at the 25 cm depth. Field verification of landfill cover soils functioning as methane sinks has profound implications for revision of landfill contributions to global methane budgets; furthermore, it should be feasible to develop mitigation strategies incorporating a combination of engineered and natural methanotrophic controls.


Frontiers in Ecology and the Environment | 2012

Challenges and opportunities for mitigating nitrous oxide emissions from fertilized cropping systems

Rodney T. Venterea; Ardell D. Halvorson; Newell R. Kitchen; Mark A. Liebig; Michel A. Cavigelli; Stephen J. Del Grosso; Peter P. Motavalli; Kelly A. Nelson; Kurt A. Spokas; Bhupinder Pal Singh; Catherine E. Stewart; Andry Ranaivoson; Jeffrey S. Strock; Hal Collins

Nitrous oxide (N2O) is often the largest single component of the greenhouse-gas budget of individual cropping systems, as well as for the US agricultural sector as a whole. Here, we highlight the factors that make mitigating N2O emissions from fertilized agroecosystems such a difficult challenge, and discuss how these factors limit the effectiveness of existing practices and therefore require new technologies and fresh ideas. Modification of the rate, source, placement, and/or timing of nitrogen fertilizer application has in some cases been an effective way to reduce N2O emissions. However, the efficacy of existing approaches to reducing N2O emissions while maintaining crop yields across locations and growing seasons is uncertain because of the interaction of multiple factors that regulate several different N2O-producing processes in soil. Although these processes have been well studied, our understanding of key aspects and our ability to manage them to mitigate N2O emissions remain limited.


Chemosphere | 1993

Landfill CH4: Rates, fates, and role in global carbon cycle

Jean E. Bogner; Kurt A. Spokas

Published estimates for worldwide landfill methane emissions range from 9 to 70 Tg yr−1. Field and laboratory studies suggest that maximum methane yields from landfilled refuse are about 0.06 to 0.09 m3 (dry kg)−1 refuse, depending on moisture content and other variables, such as organic loading, buffering capacity, and nutrients in landfill microenvironments. Methane yields may vary by more than an order of magnitude within a given site. Fates for landfill methane include (1) direct or delayed emission to the atmosphere through landfill cover materials or surface soils; (2) oxidation by methanotrophs in cover soils, with resulting emission of carbon dioxide; or (3) recovery of methane followed by combustion to produce carbon dioxide. The percent methane assigned to each pathway will vary among field sites and, for individual sites, through time. Nevertheless, a general framework for a landfill methane balance can be developed by consideration of landfill age, engineering and management practices, cover soil characteristics, and water balance. Direct measurements of landfill methane emissions are sparse, with rates between 10−6 and 10−8 g cm−2 s−1; very high rates of 400 kg m−2 yr−1 have been measured at a semiarid unvegetated site. The proportion of landfill carbon that is ultimately converted to methane and carbon dioxide is problematical; the literature suggests that, at best, 25% to 40% of refuse carbon can be converted to biogas carbon. Cellulose contributes the major portion of the methane potential. Routine excavation of nondecomposed cellulosic materials after one or two decades of landfill burial suggests that uniformly high conversion rates are rarely attained at field sites. For a longer-term viewpoint, considering archaeologic and geologic preservation of organic carbon through anaerobic burial, one can speculate that widespread landfilling practices in developed and developing countries may be providing a measurable sink for organic carbon, as well as increasing the atmospheric methane burden.


Gcb Bioenergy | 2013

Impact of biochar field aging on laboratory greenhouse gas production potentials

Kurt A. Spokas

Recent observations of decreased greenhouse gas (GHG) production from biochar amended soils have been used to further substantiate the environmental benefit of biochar production and soil incorporation strategies. However, the mechanisms behind this biochar‐mediated response have not been fully elucidated. In addition, the duration of these GHG reductions is not known and is of pivotal importance for the inclusion of biochar into future bioenergy production and climate abatement strategies. In this study, the impacts of biochar field aging on the observed GHG production/consumption were evaluated. Two different wood‐derived biochars and a macadamia nut shell biochar were weathered in an agricultural field in Rosemount, MN (2008–2011) and the impacts on net soil GHG production/consumption were assessed through laboratory incubations. For the three biochars evaluated here, weathering negated the suppression of N2O production that was originally observed from the fresh biochar in laboratory incubations. On the other hand, all three weathered biochars enhanced CO2 production (three‐ to tenfold compared with the fresh biochar amendments) in laboratory soil incubations, suggesting an enhanced microbial mineralization rate of the weathered biochar. This enhanced mineralization could be aided by the chemical oxidation of the biochar surfaces during weathering. Fresh biochar reduced observed soil methane oxidation rates, whereas the weathered biochars had no significant impacts on the observed soil methanotrophic activity. This study demonstrates that for these three biochars, weathering greatly alters the GHG response of the soil systems to biochar amendments.

Collaboration


Dive into the Kurt A. Spokas's collaboration.

Top Co-Authors

Avatar

William C. Koskinen

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Jean E. Bogner

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Jeffrey M. Novak

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

L. Cox

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeff M. Novak

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Dong Wang

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

David W. Archer

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Forcella

National Center for Agricultural Utilization Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge