Kurt Engelbrecht
Technical University of Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kurt Engelbrecht.
Journal of Applied Physics | 2015
Jaka Tušek; Kurt Engelbrecht; Lars Pilgaard Mikkelsen; Nini Pryds
We report on the elastocaloric effect of a superelastic Ni-Ti wire to be used in a cooling device. Initially, each evaluated wire was subjected to 400 loading/unloading training cycles in order to stabilize its superelastic behavior. The wires were trained at different temperatures, which lead to different stabilized superelastic behaviors. The stabilized (trained) wires were further tested isothermally (at low strain-rate) and adiabatically (at high strain-rate) at different temperatures (from 312 K to 342 K). We studied the impact of the training temperature and resulting superelastic behavior on the adiabatic temperature changes. The largest measured adiabatic temperature change during loading was 25 K with a corresponding 21 K change during unloading (at 322 K). A special focus was put on the irreversibilities in the adiabatic temperature changes between loading and unloading. It was shown that there are two sources of the temperature irreversibilities: the hysteresis (and related entropy generation) ...
Applied Physics Letters | 2012
Christian Robert Haffenden Bahl; David Velázquez; Kaspar Kirstein Nielsen; Kurt Engelbrecht; Kjeld Bøhm Andersen; Regina Bulatova; Nini Pryds
We have applied mixed valance manganite perovskites as magnetocaloric materials in a magnetic refrigeration device. Relying on exact control of the composition and a technique to process the materials into single adjoined pieces, we have observed temperature spans above 9 K with two materials. Reasonable correspondence is found between experiments and a 2D numerical model, using the measured magnetocaloric properties of the two materials as input.
Journal of Applied Physics | 2010
Kurt Engelbrecht; Christian Robert Haffenden Bahl
Active magnetic regenerator (AMR) refrigerators represent an alternative to vapor compression technology that relies on the magnetocaloric effect in a solid refrigerant. Magnetocaloric materials are in development and properties are reported regularly. Recently, there has been an emphasis on developing materials with a high entropy change with magnetization while placing lower emphasis on the adiabatic temperature change. This work uses model magnetocaloric materials and a numerical AMR model to predict how the temperature change and entropy change with magnetization interact and how they affect the performance of a practical system. The distribution of the magnetocaloric effect as a function of temperature was also studied. It was found that the adiabatic temperature change in a magnetocaloric material can be more important than the isothermal entropy change for certain conditions. A material that exhibits a sharp peak in isothermal entropy change was shown to produce a significantly lower cooling power ...
Journal of Physics D | 2012
Kaspar Kirstein Nielsen; Kurt Engelbrecht
The influence of the thermal conductivity of the regenerator solid on the performance of a flat plate active magnetic regenerator (AMR) is investigated using an established numerical AMR model. The cooling power at different (fixed) temperature spans is used as a measure of the performance for a range of thermal conductivities, operating frequencies, a long and short regenerator, and finally a regenerator with a low and a high number of transfer units (NTU). In this way the performance is mapped out and the impact of the thermal conductivity of the solid is probed.Modelling shows that under certain operating conditions, the AMR cycle is sensitive to the solid conductivity. It is found that as the operating frequency is increased it is not only sufficient to have a high NTU regenerator but the regenerator performance will also benefit from increased thermal conductivity in the solid. It is also found that a longer regenerator is generally better performing than a shorter one under the otherwise exact same conditions. This suggests that the thermal conductivity of candidate magnetocaloric materials should be considered when selecting them for use in a device.
Journal of Applied Physics | 2013
Kurt Engelbrecht; Kaspar Kirstein Nielsen; Christian Robert Haffenden Bahl; C. P. Carroll; D. van Asten
Compounds of MnFeP1−xAsx have received attention recently for their use in active magnetic regenerators (AMR) because of their relatively high isothermal entropy change and adiabatic temperature change with magnetization. However, the materials also generally exhibit a significant magnetic and thermal hysteresis, and it is not well understood how the hysteresis will affect performance in a practical AMR device. The amount of hysteresis shown by a material can be controlled to an extent by tuning the processing conditions used during material synthesis; therefore, knowledge of the practical impact of hysteresis is a key element to guide successful material development and synthesis. The properties of a magnetocaloric MnFeP1−xAsx compound are characterized as a function of temperature and applied magnetic field, and the results are used to assess the effects of hysteresis on magnetocaloric properties. Different methods of building property functions from the measured specific heat, magnetization, and adiaba...
Hvac&r Research | 2007
Kurt Engelbrecht; Greg F. Nellis; S.A. Klein; Carl B. Zimm
Active magnetic regenerative refrigeration (AMRR) systems represent an environmentally attractive alternative to vapor compression systems that do not use a fluorocarbon working fluid. The AMRR concept has previously been demonstrated using superconducting solenoid magnets that are not practical for small-scale commercial applications. However, recent AMRR prototypes that use more practical permanent magnets have proved that AMRR systems can produce cooling over a useful temperature range with a relatively low magnetic field. In addition, families of materials with large magnetocaloric effects and adjustable Curie temperatures have been developed; these materials may be used to construct layered regenerator beds that may have lower cost and provide higher performance than current materials. This paper reviews recent developments in the field of room temperature magnetic refrigeration and discusses some design issues that may affect practical systems.
Journal of Applied Physics | 2015
Tian Lei; Kaspar Kirstein Nielsen; Kurt Engelbrecht; Christian Robert Haffenden Bahl; Henrique Neves Bez; Christian Veje
We present simulation results of multi-layer active magnetic regenerators using the solid-state refrigerant La(Fe,Mn,Si)13Hy. This material presents a large, however quite sharp, isothermal entropy change that requires a careful choice of number of layers and working temperature for multi-layer regenerators. The impact of the number of layers and the sensitivity to the working temperature as well as the temperature span are quantified using a one dimensional numerical model. A study of the sensitivity of variation in Curie temperature through a uniform and normal distribution is also presented. The results show that the nominal cooling power is very sensitive to the Curie temperature variation in the multi-layer regenerators. A standard deviation of the Curie temperature variation for a normal distribution less than 0.6 K is suggested in order to achieve sufficient performance of a 15-layer regenerator with Curie temperature spacing of 2 K.
International Journal of Refrigeration-revue Internationale Du Froid | 2011
Rasmus Bjørk; Kurt Engelbrecht
The influence of the time variation of the magnetic field, termed the magnetic field profile, on the performance of a magnetocaloric refrigeration device using the active magnetic regeneration (AMR) cycle is studied for a number of process parameters for both a parallel plate and packed bed regenerator using a numerical model. The cooling curve of the AMR is shown to be almost linear far from the Curie temperature of the magnetocaloric material. It is shown that a magnetic field profile that is 10% of the cycle time out of sync with the flow profile leads to a drop in both the maximum temperature span and the maximum cooling capacity of 20-40% for both parallel plate and packed bed regenerators. The maximum cooling capacity is shown to depend very weakly on the ramp rate of the magnetic field. Reducing the temporal width of the high field portion of the magnetic field profile by 10% leads to a drop in maximum temperature span and maximum cooling capacity of 5-20%. An increase of the magnetic field from 1 T to 1.5 T increases the maximum cooling capacity by 30-50% but the maximum temperature span by only 20-30%. Finally, it was seen that the influence of changing the magnetic field was more or less the same for the different regenerator geometries and operating parameters studied here. This means that the design of the magnet can be done independently of the regenerator geometry.
Shape Memory and Superelasticity | 2016
Jaka Tušek; Kurt Engelbrecht; Lluís Mañosa; Eduard Vives; Nini Pryds
This paper presents direct and indirect methods for studying the elastocaloric effect (eCE) in shape memory materials and its comparison. The eCE can be characterized by the adiabatic temperature change or the isothermal entropy change (both as a function of applied stress/strain). To get these quantities, the evaluation of the eCE can be done using either direct methods, where one measures (adiabatic) temperature changes or indirect methods where one can measure the stress–strain–temperature characteristics of the materials and from these deduce the adiabatic temperature and isothermal entropy changes. The former can be done using the basic thermodynamic relations, i.e. Maxwell relation and Clausius–Clapeyron equation. This paper further presents basic thermodynamic properties of shape memory materials, such as the adiabatic temperature change, isothermal entropy change and total entropy–temperature diagrams (all as a function of temperature and applied stress/strain) of two groups of materials (Ni–Ti and Cu–Zn–Al alloys) obtained using indirect methods through phenomenological modelling and Maxwell relation. In the last part of the paper, the basic definition of the efficiency of the elastocaloric thermodynamic cycle (coefficient of performance) is defined and discussed.
Journal of Physics D | 2013
Kurt Engelbrecht; J. Tušek; Kaspar Kirstein Nielsen; A Kitanovski; Christian Robert Haffenden Bahl; A Poredoš
Much of the active magnetic regenerator (AMR) modelling presented in the literature considers only the solid and fluid domains of the regenerator and ignores other physical effects that have been shown to be important, such as demagnetizing fields in the regenerator, parasitic heat losses and fluid flow maldistribution in the regenerator. This paper studies the effects of these loss mechanisms and compares theoretical results with experimental results obtained on an experimental AMR device. Three parallel plate regenerators were tested, each having different demagnetizing field characteristics and fluid flow maldistributions. It was shown that when these loss mechanisms are ignored, the model significantly over predicts experimental results. Including the loss mechanisms can significantly change the model predictions, depending on the operating conditions and construction of the regenerator. The model is compared with experimental results for a range of fluid flow rates and cooling loads.