Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kurt H. Johnsen is active.

Publication


Featured researches published by Kurt H. Johnsen.


Nature | 2001

Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere.

Ram Oren; David S. Ellsworth; Kurt H. Johnsen; Nathan Phillips; Brent E. Ewers; Chris A. Maier; Karina V. R. Schäfer; Heather R. McCarthy; George R. Hendrey; Steven G. McNulty; Gabriel G. Katul

Northern mid-latitude forests are a large terrestrial carbon sink. Ignoring nutrient limitations, large increases in carbon sequestration from carbon dioxide (CO2) fertilization are expected in these forests. Yet, forests are usually relegated to sites of moderate to poor fertility, where tree growth is often limited by nutrient supply, in particular nitrogen. Here we present evidence that estimates of increases in carbon sequestration of forests, which is expected to partially compensate for increasing CO2 in the atmosphere, are unduly optimistic. In two forest experiments on maturing pines exposed to elevated atmospheric CO2, the CO2-induced biomass carbon increment without added nutrients was undetectable at a nutritionally poor site, and the stimulation at a nutritionally moderate site was transient, stabilizing at a marginal gain after three years. However, a large synergistic gain from higher CO2 and nutrients was detected with nutrients added. This gain was even larger at the poor site (threefold higher than the expected additive effect) than at the moderate site (twofold higher). Thus, fertility can restrain the response of wood carbon sequestration to increased atmospheric CO2. Assessment of future carbon sequestration should consider the limitations imposed by soil fertility, as well as interactions with nitrogen deposition.


New Phytologist | 2010

Re‐assessment of plant carbon dynamics at the Duke free‐air CO2 enrichment site: interactions of atmospheric [CO2] with nitrogen and water availability over stand development

Heather R. McCarthy; Ram Oren; Kurt H. Johnsen; Anne Gallet-Budynek; Seth G. Pritchard; Charles W. Cook; Shannon L. LaDeau; Robert B. Jackson; Adrien C. Finzi

*The potential for elevated [CO(2)]-induced changes to plant carbon (C) storage, through modifications in plant production and allocation of C among plant pools, is an important source of uncertainty when predicting future forest function. Utilizing 10 yr of data from the Duke free-air CO(2) enrichment site, we evaluated the dynamics and distribution of plant C. *Discrepancy between heights measured for this study and previously calculated heights required revision of earlier allometrically based biomass determinations, resulting in higher (up to 50%) estimates of standing biomass and net primary productivity than previous assessments. *Generally, elevated [CO(2)] caused sustained increases in plant biomass production and in standing C, but did not affect the partitioning of C among plant biomass pools. Spatial variation in net primary productivity and its [CO(2)]-induced enhancement was controlled primarily by N availability, with the difference between precipitation and potential evapotranspiration explaining most interannual variability. Consequently, [CO(2)]-induced net primary productivity enhancement ranged from 22 to 30% in different plots and years. *Through quantifying the effects of nutrient and water availability on the forest productivity response to elevated [CO(2)], we show that net primary productivity enhancement by elevated [CO(2)] is not uniform, but rather highly dependent on the availability of other growth resources.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Aboveground sink strength in forests controls the allocation of carbon below ground and its [CO2]-induced enhancement

Sari Palmroth; Ram Oren; Heather R. McCarthy; Kurt H. Johnsen; Adrien C. Finzi; John R. Butnor; Michael G. Ryan; William H. Schlesinger

The partitioning among carbon (C) pools of the extra C captured under elevated atmospheric CO2 concentration ([CO2]) determines the enhancement in C sequestration, yet no clear partitioning rules exist. Here, we used first principles and published data from four free-air CO2 enrichment (FACE) experiments on forest tree species to conceptualize the total allocation of C to below ground (TBCA) under current [CO2] and to predict the likely effect of elevated [CO2]. We show that at a FACE site where leaf area index (L) of Pinus taeda L. was altered through nitrogen fertilization, ice-storm damage, and droughts, changes in L, reflecting the aboveground sink for net primary productivity, were accompanied by opposite changes in TBCA. A similar pattern emerged when data were combined from the four FACE experiments, using leaf area duration (LD) to account for differences in growing-season length. Moreover, elevated [CO2]-induced enhancement of TBCA in the combined data decreased from ≈50% (700 g C m−2 y−1) at the lowest LD to ≈30% (200 g C m−2 y−1) at the highest LD. The consistency of the trend in TBCA with L and its response to [CO2] across the sites provides a norm for predictions of ecosystem C cycling, and is particularly useful for models that use L to estimate components of the terrestrial C balance.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Canopy leaf area constrains [CO2]-induced enhancement of productivity and partitioning among aboveground carbon pools

Heather R. McCarthy; Ram Oren; Adrien C. Finzi; Kurt H. Johnsen

Net primary productivity (NPP) is enhanced under future atmospheric [CO2] in temperate forests representing a broad range of productivity. Yet questions remain in regard to how elevated [CO2]-induced NPP enhancement may be affected by climatic variations and limiting nutrient resources, as well as how this additional production is distributed among carbon (C) pools of different longevities. Using 10 years of data from the Duke free-air CO2 enrichment (Duke FACE) site, we show that spatially, the major control of NPP was nitrogen (N) availability, through its control on canopy leaf area index (L). Elevated CO2 levels resulted in greater L, and thus greater NPP. After canopy closure had occurred, elevated [CO2] did not enhance NPP at a given L, regardless of soil water availability. Additionally, using published data from three other forest FACE sites and replacing L with leaf area duration (LD) to account for differences in growing season length, we show that aboveground NPP responded to [CO2] only through the enhancement of LD. For broadleaf forests, the fraction of aboveground NPP partitioned to wood biomass saturated with increasing LD and was not enhanced by [CO2], whereas it linearly decreased for the conifer forest but was enhanced by [CO2]. These results underscore the importance of resolving [CO2] effects on L to assess the response of NPP and C allocation. Further study is necessary to elucidate the mechanisms that control the differential allocation of C among aboveground pools in different forest types.


New Phytologist | 2010

Relationships between stem CO2 efflux, substrate supply, and growth in young loblolly pine trees

Chris A. Maier; Kurt H. Johnsen; Barton D. Clinton; Kim H. Ludovici

*We examined the relationships between stem CO(2) efflux (E(s)), diameter growth, and nonstructural carbohydrate concentration in loblolly pine trees. Carbohydrate supply was altered via stem girdling during rapid stem growth in the spring and after growth had ceased in the autumn. We hypothesized that substrate type and availability control the seasonal variation and temperature sensitivity of E(s). *The E(s) increased and decreased above and below the girdle, respectively, within 24 h of treatment. Seasonal variation in E(s) response to girdling corresponded to changes in stem soluble sugar and starch concentration. Relative to nongirdled trees, E(s) increased 94% above the girdle and decreased 50% below in the autumn compared with a 60% and 20% response at similar positions in the spring. *The sensitivity of E(s) to temperature decreased below the girdle in the autumn and spring and increased above the girdle but only in the autumn. Temperature-corrected E(s) was linearly related to soluble sugar (R(2) = 0.57) and starch (R(2) = 0.62) concentration. *We conclude that carbohydrate supply, primarily recently fixed photosynthate, strongly influences E(s) in Pinus taeda stems. Carbohydrate availability effects on E(s) obviate the utility of applying short-term temperature response functions across seasons.


Archive | 2012

Using Ground-Penetrating Radar to Detect Tree Roots and Estimate Biomass

John R. Butnor; Craig Barton; Frank P. Day; Kurt H. Johnsen; Anthony N. Mucciardi; Rachel E. Schroeder; Daniel B. Stover

Ground-penetrating radar (GPR) is a nondestructive means of detecting buried objects with electromagnetic waves. It has been applied to detect coarse woody roots, estimate biomass, root diameter, and spatial distribution of roots. This chapter discusses the development of root assessment techniques, basic methodology, and examples of field applications where GPR was successful.


Canadian Journal of Forest Research | 2010

Maximum growth potential in loblolly pine: results from a 47-year-old spacing study in Hawaii

Lisa J. Samuelson; Thomas L. Eberhardt; John R. Butnor; Tom A. Stokes; Kurt H. Johnsen

Growth, allocation to woody root biomass, wood properties, leaf physiology, and shoot morphology were examined in a 47-year-old loblolly pine (Pinus taeda L.) density trial located in Maui, Hawaii,...


Global Change Biology | 2014

Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux

A. Christopher Oishi; Sari Palmroth; Kurt H. Johnsen; Heather R. McCarthy; Ram Oren

Soil CO2 efflux (Fsoil ) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity, but the long-term effects of these factors on Fsoil are less clear. Expanding on previous studies at the Duke Free-Air CO2 Enrichment (FACE) site, we quantified the effects of elevated [CO2] and N fertilization on Fsoil using daily measurements from automated chambers over 10 years. Consistent with previous results, compared to ambient unfertilized plots, annual Fsoil increased under elevated [CO2] (ca. 17%) and decreased with N (ca. 21%). N fertilization under elevated [CO2] reduced Fsoil to values similar to untreated plots. Over the study period, base respiration rates increased with leaf productivity, but declined after productivity saturated. Despite treatment-induced differences in aboveground biomass, soil temperature and water content were similar among treatments. Interannually, low soil water content decreased annual Fsoil from potential values - estimated based on temperature alone assuming nonlimiting soil water content - by ca. 0.7% per 1.0% reduction in relative extractable water. This effect was only slightly ameliorated by elevated [CO2]. Variability in soil N availability among plots accounted for the spatial variability in Fsoil , showing a decrease of ca. 114 g C m(-2) yr(-1) per 1 g m(-2) increase in soil N availability, with consistently higher Fsoil in elevated [CO2] plots ca. 127 g C per 100 ppm [CO2] over the +200 ppm enrichment. Altogether, reflecting increased belowground carbon partitioning in response to greater plant nutritional needs, the effects of elevated [CO2] and N fertilization on Fsoil in this stand are sustained beyond the early stages of stand development and through stabilization of annual foliage production.


Tree Physiology | 2010

Soil incorporation of logging residue affects fine-root and mycorrhizal root-tip dynamics of young loblolly pine clones

Seth G. Pritchard; Chris A. Maier; Kurt H. Johnsen; Andrea J. Grabman; Anne P. Chalmers; Marianne K. Burke

Loblolly pine (Pinus taeda L.) plantations cover a large geographic area of the southeastern USA and supply a large proportion of the nations wood products. Research on management strategies designed to maximize wood production while also optimizing nutrient use efficiency and soil C sequestration is needed. We used minirhizotrons to quantify the effects of incorporating logging residues into soil on fine-root standing crop, production and mortality, and mycorrhizal root tips in young loblolly pine clones of contrasting ideotypes. Clone 93 is known to allocate more C to stem growth, while clone 32 allocates less C to stems and more to leaves. The relative allocation by these clones to support fine-root turnover is unknown. Clone 32 exhibited 37% more fine-root mortality than clone 93, which was mainly the result of a greater standing crop of fine roots. Fine-root standing crop in plots amended with logging residue was initially higher than control plots, but 2.5 years after planting, standing crop in control plots had exceeded that in mulched plots. Production of mycorrhizal root tips, on the other hand, was initially higher in control than mulched plots, but during the last 9 months of the study, mycorrhizal tip production was greater in mulched than control plots, especially for clone 93. As expected, turnover rate of fine roots was greater in surface soil (0-25 cm) compared with deeper (25-50 cm) soil and for small roots (< 0.4 mm diameter) compared with larger fine roots (0.4-2.0 mm diameter). Rates of fine-root turnover were similar in both clones. Organic matter additions reduced survivorship of individual roots and increased turnover rates of fine-root populations. Results indicate that management decisions should be tailored to fit the growth and allocation patterns of available clones.


Global Change Biology | 2017

Dynamics of soil CO2 efflux under varying atmospheric CO2 concentrations reveal dominance of slow processes

Dohyoung Kim; Ram Oren; James S. Clark; Sari Palmroth; A. Christopher Oishi; Heather R. McCarthy; Chris A. Maier; Kurt H. Johnsen

Abstract We evaluated the effect on soil CO2 efflux (FCO2) of sudden changes in photosynthetic rates by altering CO2 concentration in plots subjected to +200 ppmv for 15 years. Five‐day intervals of exposure to elevated CO2 (eCO2) ranging 1.0–1.8 times ambient did not affect FCO2. FCO2 did not decrease until 4 months after termination of the long‐term eCO2 treatment, longer than the 10 days observed for decrease of FCO2 after experimental blocking of C flow to belowground, but shorter than the ˜13 months it took for increase of FCO2 following the initiation of eCO2. The reduction of FCO2 upon termination of enrichment (˜35%) cannot be explained by the reduction of leaf area (˜15%) and associated carbohydrate production and allocation, suggesting a disproportionate contraction of the belowground ecosystem components; this was consistent with the reductions in base respiration and FCO2‐temperature sensitivity. These asymmetric responses pose a tractable challenge to process‐based models attempting to isolate the effect of individual processes on FCO2.

Collaboration


Dive into the Kurt H. Johnsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John E. Major

Natural Resources Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Felipe G. Sanchez

United States Forest Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge