Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kurt LaButti is active.

Publication


Featured researches published by Kurt LaButti.


Science | 2012

The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes

Dimitrios Floudas; Manfred Binder; Robert Riley; Kerrie Barry; Robert A. Blanchette; Bernard Henrissat; Ángel T. Martínez; Robert Otillar; Joseph W. Spatafora; Jagjit S. Yadav; Andrea Aerts; Isabelle Benoit; Alex Boyd; Alexis Carlson; Alex Copeland; Pedro M. Coutinho; Ronald P. de Vries; Patricia Ferreira; Keisha Findley; Brian Foster; Jill Gaskell; Dylan Glotzer; Paweł Górecki; Joseph Heitman; Cedar Hesse; Chiaki Hori; Kiyohiko Igarashi; Joel A. Jurgens; Nathan Kallen; Phil Kersten

Dating Wood Rot Specific lineages within the basidiomycete fungi, white rot species, have evolved the ability to break up a major structural component of woody plants, lignin, relative to their non–lignin-decaying brown rot relatives. Through the deep phylogenetic sampling of fungal genomes, Floudas et al. (p. 1715; see the Perspective by Hittinger) mapped the detailed evolution of wood-degrading enzymes. A key peroxidase and other enzymes involved in lignin decay were present in the common ancestor of the Agaricomycetes. These genes then expanded through gene duplications in parallel, giving rise to white rot lineages. The enzyme family that enables fungi to digest lignin expanded around the end of the coal-forming Carboniferous period. Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contains non–lignin-degrading brown rot and ectomycorrhizal species. Comparative analyses of 31 fungal genomes (12 generated for this study) suggest that lignin-degrading peroxidases expanded in the lineage leading to the ancestor of the Agaricomycetes, which is reconstructed as a white rot species, and then contracted in parallel lineages leading to brown rot and mycorrhizal species. Molecular clock analyses suggest that the origin of lignin degradation might have coincided with the sharp decrease in the rate of organic carbon burial around the end of the Carboniferous period.


Science | 2011

The Plant Cell Wall–Decomposing Machinery Underlies the Functional Diversity of Forest Fungi

Daniel C. Eastwood; Dimitrios Floudas; Manfred Binder; Andrzej Majcherczyk; Patrick Schneider; Andrea Aerts; Fred O. Asiegbu; Scott E. Baker; Kerrie Barry; Mika Bendiksby; Melanie Blumentritt; Pedro M. Coutinho; Dan Cullen; Ronald P. de Vries; Allen C. Gathman; Barry Goodell; Bernard Henrissat; Katarina Ihrmark; Håvard Kauserud; Annegret Kohler; Kurt LaButti; Alla Lapidus; José L. Lavín; Yong-Hwan Lee; Erika Lindquist; Walt W. Lilly; Susan Lucas; Emmanuelle Morin; Claude Murat; José A. Oguiza

Comparative genomic analysis of “dry rot” fungus shows both convergent evolution and divergence among fungal decomposers. Brown rot decay removes cellulose and hemicellulose from wood—residual lignin contributing up to 30% of forest soil carbon—and is derived from an ancestral white rot saprotrophy in which both lignin and cellulose are decomposed. Comparative and functional genomics of the “dry rot” fungus Serpula lacrymans, derived from forest ancestors, demonstrated that the evolution of both ectomycorrhizal biotrophy and brown rot saprotrophy were accompanied by reductions and losses in specific protein families, suggesting adaptation to an intercellular interaction with plant tissue. Transcriptome and proteome analysis also identified differences in wood decomposition in S. lacrymans relative to the brown rot Postia placenta. Furthermore, fungal nutritional mode diversification suggests that the boreal forest biome originated via genetic coevolution of above- and below-ground biota.


PLOS Pathogens | 2012

Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Dothideomycetes Fungi

Robin A. Ohm; Nicolas Feau; Bernard Henrissat; Conrad L. Schoch; Benjamin A. Horwitz; Kerrie Barry; Bradford Condon; Alex Copeland; Braham Dhillon; Fabian Glaser; Cedar Hesse; Idit Kosti; Kurt LaButti; Erika Lindquist; Susan Lucas; Asaf Salamov; Rosie E. Bradshaw; Lynda M. Ciuffetti; Richard C. Hamelin; Gert H. J. Kema; Christopher B. Lawrence; James A. Scott; Joseph W. Spatafora; B. Gillian Turgeon; Pierre J. G. M. de Wit; Shaobin Zhong; Stephen B. Goodwin; Igor V. Grigoriev

The class Dothideomycetes is one of the largest groups of fungi with a high level of ecological diversity including many plant pathogens infecting a broad range of hosts. Here, we compare genome features of 18 members of this class, including 6 necrotrophs, 9 (hemi)biotrophs and 3 saprotrophs, to analyze genome structure, evolution, and the diverse strategies of pathogenesis. The Dothideomycetes most likely evolved from a common ancestor more than 280 million years ago. The 18 genome sequences differ dramatically in size due to variation in repetitive content, but show much less variation in number of (core) genes. Gene order appears to have been rearranged mostly within chromosomal boundaries by multiple inversions, in extant genomes frequently demarcated by adjacent simple repeats. Several Dothideomycetes contain one or more gene-poor, transposable element (TE)-rich putatively dispensable chromosomes of unknown function. The 18 Dothideomycetes offer an extensive catalogue of genes involved in cellulose degradation, proteolysis, secondary metabolism, and cysteine-rich small secreted proteins. Ancestors of the two major orders of plant pathogens in the Dothideomycetes, the Capnodiales and Pleosporales, may have had different modes of pathogenesis, with the former having fewer of these genes than the latter. Many of these genes are enriched in proximity to transposable elements, suggesting faster evolution because of the effects of repeat induced point (RIP) mutations. A syntenic block of genes, including oxidoreductases, is conserved in most Dothideomycetes and upregulated during infection in L. maculans, suggesting a possible function in response to oxidative stress.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white rot/ brown rot paradigm for wood decay fungi

Robert Riley; Asaf Salamov; Daren W. Brown; László G. Nagy; Dimitrios Floudas; Benjamin W. Held; Anthony Levasseur; Vincent Lombard; Emmanuelle Morin; Robert Otillar; Erika Lindquist; Hui Sun; Kurt LaButti; Jeremy Schmutz; Dina Jabbour; Hong Luo; Scott E. Baker; Antonio G. Pisabarro; Jonathan D. Walton; Robert A. Blanchette; Bernard Henrissat; Francis L. Martin; Dan Cullen; David S. Hibbett; Igor V. Grigoriev

Significance Wood decay fungi have historically been characterized as either white rot, which degrade all components of plant cell walls, including lignin, or brown rot, which leave lignin largely intact. Genomic analyses have shown that white-rot species possess multiple lignin-degrading peroxidases (PODs) and expanded suites of enzymes attacking crystalline cellulose. To test the adequacy of the white/brown-rot categories, we analyzed 33 fungal genomes. Some species lack PODs, and thus resemble brown-rot fungi, but possess the cellulose-degrading apparatus typical of white-rot fungi. Moreover, they appear to degrade lignin, based on decay analyses on wood wafers. Our results indicate that the prevailing paradigm of white rot vs. brown rot does not capture the diversity of fungal wood decay mechanisms. Basidiomycota (basidiomycetes) make up 32% of the described fungi and include most wood-decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic comparisons suggested that the two decay modes can be distinguished based on the presence or absence of ligninolytic class II peroxidases (PODs), as well as the abundance of enzymes acting directly on crystalline cellulose (reduced in brown rot). To assess the generality of the white-rot/brown-rot classification paradigm, we compared the genomes of 33 basidiomycetes, including four newly sequenced wood decayers, and performed phylogenetically informed principal-components analysis (PCA) of a broad range of gene families encoding plant biomass-degrading enzymes. The newly sequenced Botryobasidium botryosum and Jaapia argillacea genomes lack PODs but possess diverse enzymes acting on crystalline cellulose, and they group close to the model white-rot species Phanerochaete chrysosporium in the PCA. Furthermore, laboratory assays showed that both B. botryosum and J. argillacea can degrade all polymeric components of woody plant cell walls, a characteristic of white rot. We also found expansions in reducing polyketide synthase genes specific to the brown-rot fungi. Our results suggest a continuum rather than a dichotomy between the white-rot and brown-rot modes of wood decay. A more nuanced categorization of rot types is needed, based on an improved understanding of the genomics and biochemistry of wood decay.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche

Emmanuelle Morin; Annegret Kohler; Adam R. Baker; Marie Foulongne-Oriol; Vincent Lombard; László G. Nagy; Robin A. Ohm; Aleksandrina Patyshakuliyeva; Annick Brun; Andrea Aerts; Andy M. Bailey; Christophe Billette; Pedro M. Coutinho; Greg Deakin; Harshavardhan Doddapaneni; Dimitrios Floudas; Jane Grimwood; Kristiina Hildén; Ursula Kües; Kurt LaButti; Alla Lapidus; Erika Lindquist; Susan Lucas; Claude Murat; Robert Riley; Asaf Salamov; Jeremy Schmutz; Venkataramanan Subramanian; Han A. B. Wösten; Jianping Xu

Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the “button mushroom” forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost and during mushroom formation. The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose, pectin, and protein degradation are more highly expressed in compost. The striking expansion of heme-thiolate peroxidases and β-etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis

Elena Fernández-Fueyo; Francisco J. Ruiz-Dueñas; Patricia Ferreira; Dimitrios Floudas; David S. Hibbett; Paulo Canessa; Luis F. Larrondo; Timothy Y. James; Daniela Seelenfreund; Sergio Lobos; Rubén Polanco; Mario Tello; Yoichi Honda; Takahito Watanabe; Takashi Watanabe; Ryu Jae San; Christian P. Kubicek; Monika Schmoll; Jill Gaskell; Kenneth E. Hammel; Franz J. St. John; Amber Vanden Wymelenberg; Grzegorz Sabat; Sandra Splinter BonDurant; Khajamohiddin Syed; Jagjit S. Yadav; Harshavardhan Doddapaneni; Venkataramanan Subramanian; José L. Lavín; José A. Oguiza

Efficient lignin depolymerization is unique to the wood decay basidiomycetes, collectively referred to as white rot fungi. Phanerochaete chrysosporium simultaneously degrades lignin and cellulose, whereas the closely related species, Ceriporiopsis subvermispora, also depolymerizes lignin but may do so with relatively little cellulose degradation. To investigate the basis for selective ligninolysis, we conducted comparative genome analysis of C. subvermispora and P. chrysosporium. Genes encoding manganese peroxidase numbered 13 and five in C. subvermispora and P. chrysosporium, respectively. In addition, the C. subvermispora genome contains at least seven genes predicted to encode laccases, whereas the P. chrysosporium genome contains none. We also observed expansion of the number of C. subvermispora desaturase-encoding genes putatively involved in lipid metabolism. Microarray-based transcriptome analysis showed substantial up-regulation of several desaturase and MnP genes in wood-containing medium. MS identified MnP proteins in C. subvermispora culture filtrates, but none in P. chrysosporium cultures. These results support the importance of MnP and a lignin degradation mechanism whereby cleavage of the dominant nonphenolic structures is mediated by lipid peroxidation products. Two C. subvermispora genes were predicted to encode peroxidases structurally similar to P. chrysosporium lignin peroxidase and, following heterologous expression in Escherichia coli, the enzymes were shown to oxidize high redox potential substrates, but not Mn2+. Apart from oxidative lignin degradation, we also examined cellulolytic and hemicellulolytic systems in both fungi. In summary, the C. subvermispora genetic inventory and expression patterns exhibit increased oxidoreductase potential and diminished cellulolytic capability relative to P. chrysosporium.


PLOS Genetics | 2013

Comparative Genome Structure, Secondary Metabolite, and Effector Coding Capacity across Cochliobolus Pathogens

Bradford Condon; Yueqiang Leng; Dongliang Wu; Kathryn E. Bushley; Robin A. Ohm; Robert Otillar; Joel Martin; Wendy Schackwitz; Jane Grimwood; NurAinIzzati A I MohdZainudin; Chunsheng Xue; Rui Wang; Viola A. Manning; Braham Dhillon; Zheng Jin Tu; Brian J. Steffenson; Asaf Salamov; Hui Sun; Steve Lowry; Kurt LaButti; James Han; Alex Copeland; Erika Lindquist; Kerrie Barry; Jeremy Schmutz; Scott E. Baker; Lynda M. Ciuffetti; Igor V. Grigoriev; Shaobin Zhong; B. Gillian Turgeon

The genomes of five Cochliobolus heterostrophus strains, two Cochliobolus sativus strains, three additional Cochliobolus species (Cochliobolus victoriae, Cochliobolus carbonum, Cochliobolus miyabeanus), and closely related Setosphaeria turcica were sequenced at the Joint Genome Institute (JGI). The datasets were used to identify SNPs between strains and species, unique genomic regions, core secondary metabolism genes, and small secreted protein (SSP) candidate effector encoding genes with a view towards pinpointing structural elements and gene content associated with specificity of these closely related fungi to different cereal hosts. Whole-genome alignment shows that three to five percent of each genome differs between strains of the same species, while a quarter of each genome differs between species. On average, SNP counts among field isolates of the same C. heterostrophus species are more than 25× higher than those between inbred lines and 50× lower than SNPs between Cochliobolus species. The suites of nonribosomal peptide synthetase (NRPS), polyketide synthase (PKS), and SSP–encoding genes are astoundingly diverse among species but remarkably conserved among isolates of the same species, whether inbred or field strains, except for defining examples that map to unique genomic regions. Functional analysis of several strain-unique PKSs and NRPSs reveal a strong correlation with a role in virulence.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Comparative genomics of xylose-fermenting fungi for enhanced biofuel production

Dana J. Wohlbach; Alan Kuo; Trey K. Sato; Katlyn M. Potts; Asaf Salamov; Kurt LaButti; Hui Sun; Alicia Clum; Jasmyn Pangilinan; Erika Lindquist; Susan Lucas; Alla Lapidus; Mingjie Jin; Christa Gunawan; Venkatesh Balan; Bruce E. Dale; Thomas W. Jeffries; Robert Zinkel; Kerrie Barry; Igor V. Grigoriev; Audrey P. Gasch

Cellulosic biomass is an abundant and underused substrate for biofuel production. The inability of many microbes to metabolize the pentose sugars abundant within hemicellulose creates specific challenges for microbial biofuel production from cellulosic material. Although engineered strains of Saccharomyces cerevisiae can use the pentose xylose, the fermentative capacity pales in comparison with glucose, limiting the economic feasibility of industrial fermentations. To better understand xylose utilization for subsequent microbial engineering, we sequenced the genomes of two xylose-fermenting, beetle-associated fungi, Spathaspora passalidarum and Candida tenuis. To identify genes involved in xylose metabolism, we applied a comparative genomic approach across 14 Ascomycete genomes, mapping phenotypes and genotypes onto the fungal phylogeny, and measured genomic expression across five Hemiascomycete species with different xylose-consumption phenotypes. This approach implicated many genes and processes involved in xylose assimilation. Several of these genes significantly improved xylose utilization when engineered into S. cerevisiae, demonstrating the power of comparative methods in rapidly identifying genes for biomass conversion while reflecting on fungal ecology.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Comparative genomics of biotechnologically important yeasts

Robert Riley; Sajeet Haridas; Kenneth H. Wolfe; Mariana R. Lopes; Chris Todd Hittinger; Markus Göker; Asaf Salamov; Jennifer H. Wisecaver; Tanya M. Long; Christopher H. Calvey; Andrea Aerts; Kerrie Barry; Cindy Choi; Alicia Clum; Aisling Y. Coughlan; Shweta Deshpande; Alexander P. Douglass; Sara J. Hanson; Hans-Peter Klenk; Kurt LaButti; Alla Lapidus; Erika Lindquist; Anna Lipzen; Jan P. Meier-Kolthoff; Robin A. Ohm; Robert Otillar; Jasmyn Pangilinan; Yi Peng; Antonis Rokas; Carlos A. Rosa

Significance The highly diverse Ascomycete yeasts have enormous biotechnological potential. Collectively, these yeasts convert a broad range of substrates into useful compounds, such as ethanol, lipids, and vitamins, and can grow in extremes of temperature, salinity, and pH. We compared 29 yeast genomes with the goal of correlating genetics to useful traits. In one rare species, we discovered a genetic code that translates CUG codons to alanine rather than canonical leucine. Genome comparison enabled correlation of genes to useful metabolic properties and showed the synteny of the mating-type locus to be conserved over a billion years of evolution. Our study provides a roadmap for future biotechnological exploitations. Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the clade sister to the known CUG-Ser clade. Our well-resolved yeast phylogeny shows that some traits, such as methylotrophy, are restricted to single clades, whereas others, such as l-rhamnose utilization, have patchy phylogenetic distributions. Gene clusters, with variable organization and distribution, encode many pathways of interest. Genomics can predict some biochemical traits precisely, but the genomic basis of others, such as xylose utilization, remains unresolved. Our data also provide insight into early evolution of ascomycetes. We document the loss of H3K9me2/3 heterochromatin, the origin of ascomycete mating-type switching, and panascomycete synteny at the MAT locus. These data and analyses will facilitate the engineering of efficient biosynthetic and degradative pathways and gateways for genomic manipulation.


BMC Genomics | 2012

Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize

Hitoshi Suzuki; Jacqueline MacDonald; Khajamohiddin Syed; Asaf Salamov; Chiaki Hori; Andrea Aerts; Bernard Henrissat; Ad Wiebenga; Patricia A. vanKuyk; Kerrie Barry; Erika Lindquist; Kurt LaButti; Alla Lapidus; Susan Lucas; Pedro M. Coutinho; Yunchen Gong; Masahiro Samejima; Radhakrishnan Mahadevan; Mamdouh Abou-Zaid; Ronald P. de Vries; Kiyohiko Igarashi; Jagjit S. Yadav; Igor V. Grigoriev; Emma R. Master

BackgroundSoftwood is the predominant form of land plant biomass in the Northern hemisphere, and is among the most recalcitrant biomass resources to bioprocess technologies. The white rot fungus, Phanerochaete carnosa, has been isolated almost exclusively from softwoods, while most other known white-rot species, including Phanerochaete chrysosporium, were mainly isolated from hardwoods. Accordingly, it is anticipated that P. carnosa encodes a distinct set of enzymes and proteins that promote softwood decomposition. To elucidate the genetic basis of softwood bioconversion by a white-rot fungus, the present study reports the P. carnosa genome sequence and its comparative analysis with the previously reported P. chrysosporium genome.ResultsP. carnosa encodes a complete set of lignocellulose-active enzymes. Comparative genomic analysis revealed that P. carnosa is enriched with genes encoding manganese peroxidase, and that the most divergent glycoside hydrolase families were predicted to encode hemicellulases and glycoprotein degrading enzymes. Most remarkably, P. carnosa possesses one of the largest P450 contingents (266 P450s) among the sequenced and annotated wood-rotting basidiomycetes, nearly double that of P. chrysosporium. Along with metabolic pathway modeling, comparative growth studies on model compounds and chemical analyses of decomposed wood components showed greater tolerance of P. carnosa to various substrates including coniferous heartwood.ConclusionsThe P. carnosa genome is enriched with genes that encode P450 monooxygenases that can participate in extractives degradation, and manganese peroxidases involved in lignin degradation. The significant expansion of P450s in P. carnosa, along with differences in carbohydrate- and lignin-degrading enzymes, could be correlated to the utilization of heartwood and sapwood preparations from both coniferous and hardwood species.

Collaboration


Dive into the Kurt LaButti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kerrie Barry

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar

Anna Lipzen

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar

Erika Lindquist

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Riley

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar

Alan Kuo

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alicia Clum

Joint Genome Institute

View shared research outputs
Top Co-Authors

Avatar

Asaf Salamov

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge