Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kurt Wollenberg is active.

Publication


Featured researches published by Kurt Wollenberg.


Emerging Infectious Diseases | 2008

Cryptococcus neoformans Strains and Infection in Apparently Immunocompetent Patients, China

Jianghan Chen; Ashok Varma; Mara R. Diaz; Anastasia P. Litvintseva; Kurt Wollenberg; Kyung J. Kwon-Chung

High incidence of cryptococcosis in these patients is in contrast to reports from other countries.


Journal of Immunology | 2007

Immune Cross-Reactivity in Celiac Disease: Anti-Gliadin Antibodies Bind to Neuronal Synapsin I

Armin Alaedini; Haruka Okamoto; Chiara Briani; Kurt Wollenberg; Holly A. Shill; Khalafalla O. Bushara; Howard W. Sander; Peter H. Green; Mark Hallett; Norman Latov

Celiac disease is an immune-mediated disorder triggered by ingestion of wheat gliadin and related proteins in genetically susceptible individuals. In addition to the characteristic enteropathy, celiac disease is associated with various extraintestinal manifestations, including neurologic complications such as neuropathy, ataxia, seizures, and neurobehavioral changes. The cause of the neurologic manifestations is unknown, but autoimmunity resulting from molecular mimicry between gliadin and nervous system proteins has been proposed to play a role. In this study, we sought to investigate the immune reactivity of the anti-gliadin Ab response toward neural proteins. We characterized the binding of affinity-purified anti-gliadin Abs from immunized animals to brain proteins by one- and two-dimensional gel electrophoresis, immunoblotting, and peptide mass mapping. The major immunoreactive protein was identified as synapsin I. Anti-gliadin Abs from patients with celiac disease also bound to the protein. Such cross-reactivity may provide clues into the pathogenic mechanism of the neurologic deficits that are associated with gluten sensitivity.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Origin, antiviral function and evidence for positive selection of the gammaretrovirus restriction gene Fv1 in the genus Mus

Yuhe Yan; Alicia Buckler-White; Kurt Wollenberg; Christine A. Kozak

The Fv1 virus resistance gene is a coopted endogenous retrovirus (ERV) sequence related to the gag gene of the MuERV-L ERV family. Three major Fv1 resistance alleles have been identified in laboratory mice, and they target virus capsid genes to produce characteristic patterns of resistance to mouse leukemia viruses (MLVs). We identified Fv1 in 3 of the 4 Mus subgenera; its absence from Coelomys and 1 of 3 species of Pyromys indicate Fv1 was acquired shortly after the origin of the Mus genus. We sequenced Fv1 genes from 21 mice representative of the major taxonomic groups of Mus. Two lines of evidence indicate that Fv1 has had antiviral function for 7 million years of evolution. First, 2 species of African pygmy mice (subgenus Nannomys) show an Fv1-like MLV resistance, and transduced cells expressing the Nannomys Fv1 gene reproduce this resistance pattern. Second, sequence comparisons suggest that Fv1 has been involved in genetic conflicts throughout Mus evolution. We found evidence for strong positive selection of Fv1 and identified 6 codons that show evidence of positive selection: 3 codons in the C-terminal region including 2 previously shown to contribute to Fv1 restriction in laboratory mice, and 3 codons in a 10-codon segment overlapping the major homology region of Fv1; this segment is known to be involved in capsid multimerization. This analysis suggests that Fv1 has had an antiviral role throughout Mus evolution predating exposure of mice to the MLVs restricted by laboratory mouse Fv1, and suggests a mechanism for Fv1 restriction.


Journal of Biological Chemistry | 2013

An Epigenetic Antimalarial Resistance Mechanism Involving Parasite Genes Linked to Nutrient Uptake

Paresh Sharma; Kurt Wollenberg; Morgan Sellers; Kayvan Zainabadi; Kevin Galinsky; Eli L. Moss; Wang Nguitragool; Daniel E. Neafsey; Sanjay A. Desai

Background: Malaria parasites acquire antimalarial resistance through incompletely understood mechanisms. Results: Resistance to blasticidin S results from reversible silencing of parasite clag genes through histone modifications without DNA level changes. Conclusion: Sophisticated epigenetic control of clag genes permits regulated control of nutrient and antimalarial transport at the host membrane. Significance: This resistance mechanism allows rapid parasite adaptation to environmental pressures and is worrisome for drug discovery efforts. Acquired antimalarial drug resistance produces treatment failures and has led to periods of global disease resurgence. In Plasmodium falciparum, resistance is known to arise through genome-level changes such as mutations and gene duplications. We now report an epigenetic resistance mechanism involving genes responsible for the plasmodial surface anion channel, a nutrient channel that also transports ions and antimalarial compounds at the host erythrocyte membrane. Two blasticidin S-resistant lines exhibited markedly reduced expression of clag genes linked to channel activity, but had no genome-level changes. Silencing aborted production of the channel protein and was directly responsible for reduced uptake. Silencing affected clag paralogs on two chromosomes and was mediated by specific histone modifications, allowing a rapidly reversible drug resistance phenotype advantageous to the parasite. These findings implicate a novel epigenetic resistance mechanism that involves reduced host cell uptake and is a worrisome liability for water-soluble antimalarial drugs.


PLOS ONE | 2009

Molecular Evolution of Immune Genes in the Malaria Mosquito Anopheles gambiae

Tovi Lehmann; Jen C.C. Hume; Monica Licht; Christopher S. Burns; Kurt Wollenberg; Fred Simard; José M. C. Ribeiro

Background As pathogens that circumvent the host immune response are favoured by selection, so are host alleles that reduce parasite load. Such evolutionary processes leave their signature on the genes involved. Deciphering modes of selection operating on immune genes might reveal the nature of host-pathogen interactions and factors that govern susceptibility in host populations. Such understanding would have important public health implications. Methodology/Findings We analyzed polymorphisms in four mosquito immune genes (SP14D1, GNBP, defensin, and gambicin) to decipher selection effects, presumably mediated by pathogens. Using samples of Anopheles arabiensis, An. quadriannulatus and four An. gambiae populations, as well as published sequences from other Culicidae, we contrasted patterns of polymorphisms between different functional units of the same gene within and between populations. Our results revealed selection signatures operating on different time scales. At the most recent time scale, within-population diversity revealed purifying selection. Between populations and between species variation revealed reduced differentiation (GNBP and gambicin) at coding vs. noncoding- regions, consistent with balancing selection. McDonald-Kreitman tests between An. quadriannulatus and both sibling species revealed higher fixation rate of synonymous than nonsynonymous substitutions (GNBP) in accordance with frequency dependent balancing selection. At the longest time scale (>100 my), PAML analysis using distant Culicid taxa revealed positive selection at one codon in gambicin. Patterns of genetic variation were independent of exposure to human pathogens. Significance and Conclusions Purifying selection is the most common form of selection operating on immune genes as it was detected on a contemporary time scale on all genes. Selection for “hypervariability” was not detected, but negative balancing selection, detected at a recent evolutionary time scale between sibling species may be rather common. Detection of positive selection at the deepest evolutionary time scale suggests that it occurs infrequently, possibly in association with speciation events. Our results provided no evidence to support the hypothesis that selection was mediated by pathogens that are transmitted to humans.


PLOS Pathogens | 2010

Adaptive Evolution of Mus Apobec3 Includes Retroviral Insertion and Positive Selection at Two Clusters of Residues Flanking the Substrate Groove

Bradley Sanville; Michael A. Dolan; Kurt Wollenberg; Yuhe Yan; Carrie Martin; Man Lung Yeung; Klaus Strebel; Alicia Buckler-White; Christine A. Kozak

Mouse APOBEC3 (mA3) is a cytidine deaminase with antiviral activity. mA3 is linked to the Rfv3 virus resistance factor, a gene responsible for recovery from infection by Friend murine leukemia virus, and mA3 allelic variants differ in their ability to restrict mouse mammary tumor virus. We sequenced mA3 genes from 38 inbred strains and wild mouse species, and compared the mouse sequence and predicted structure with human APOBEC3G (hA3G). An inserted sequence was identified in the virus restrictive C57BL strain allele that disrupts a splice donor site. This insertion represents the long terminal repeat of the xenotropic mouse gammaretrovirus, and was acquired in Eurasian mice that harbor xenotropic retrovirus. This viral regulatory sequence does not alter splicing but is associated with elevated mA3 expression levels in spleens of laboratory and wild-derived mice. Analysis of Mus mA3 coding sequences produced evidence of positive selection and identified 10 codons with very high posterior probabilities of having evolved under positive selection. Six of these codons lie in two clusters in the N-terminal catalytically active cytidine deaminase domain (CDA), and 5 of those 6 codons are polymorphic in Rfv3 virus restrictive and nonrestrictive mice and align with hA3G CDA codons that are critical for deaminase activity. Homology models of mA3 indicate that the two selected codon clusters specify residues that are opposite each other along the predicted CDA active site groove, and that one cluster corresponds to an hAPOBEC substrate recognition loop. Substitutions at these clustered mA3 codons alter antiviral activity. This analysis suggests that mA3 has been under positive selection throughout Mus evolution, and identified an inserted retroviral regulatory sequence associated with enhanced expression in virus resistant mice and specific residues that modulate antiviral activity.


Journal of Virology | 2010

Evolution of Functional and Sequence Variants of the Mammalian XPR1 Receptor for Mouse Xenotropic Gammaretroviruses and the Human-Derived Retrovirus XMRV

Yuhe Yan; Qingping Liu; Kurt Wollenberg; Carrie Martin; Alicia Buckler-White; Christine A. Kozak

ABSTRACT Genetic conflicts between retroviruses and their receptors result in the evolution of novel host entry restrictions and novel virus envelopes, and such variants can influence trans-species transmission. We screened rodents and other mammals for sequence variation in the Xpr1 receptor for the mouse xenotropic or polytropic mouse leukemia viruses (X-MLVs or P-MLVs, respectively) of the gammaretrovirus family and for susceptibility to mouse-derived X/P-MLVs and to XMRV (xenotropic murine leukemia virus-related virus), an X-MLV-like virus isolated from humans with prostate cancer and chronic fatigue syndrome. We identified multiple distinct susceptibility phenotypes; these include the four known Xpr1 variants in Mus and a novel fifth Xpr1 gene found in Mus molossinus and Mus musculus. We describe the geographic and species distribution of the Mus Xpr1 variants but failed to find the X-MLV-restrictive laboratory mouse allele in any wild mouse. We used mutagenesis and phylogenetic analysis to evaluate the functional contributions made by constrained, variable, and deleted residues. Rodent Xpr1 is under positive selection, indicating a history of host-pathogen conflicts; several codons under selection have known roles in virus entry. All non-Mus mammals are susceptible to mouse X-MLVs, but some restrict other members of the X/P-MLV family, and the resistance of hamster and gerbil cells to XMRV indicates that XMRV has unique receptor requirements. We show that the hypervariable fourth extracellular XPR1 loop (ECL4) contains three evolutionarily constrained residues that do not contribute to receptor function, we identify two novel residues important for virus entry (I579 and T583), and we describe a unique pattern of ECL4 variation in the three virus-restrictive Xpr1 variants found in MLV-infected house mice; these mice carry different deletions in ECL4, suggesting either that these sites or loop size affects receptor function.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Diminished viral replication and compartmentalization of hepatitis C virus in hepatocellular carcinoma tissue

Djamila Harouaka; Ronald E. Engle; Kurt Wollenberg; Giacomo Diaz; Ashley Tice; Fausto Zamboni; Sugantha Govindarajan; Harvey J. Alter; David E. Kleiner; Patrizia Farci

Significance Hepatocellular carcinoma (HCC) associated with hepatitis C virus (HCV) infection is the fastest-rising cause of cancer-related death in the United States. The level of intratumor HCV replication and the molecular interactions between virus and tumor remain elusive, however. Here we demonstrate that the ability of HCV to replicate in HCC is severely hampered despite unchanged miR122 expression. Surprisingly, we found that livers containing HCC harbor a more diverse viral population than that seen in cirrhotic livers without HCC. Tracking of individual variants demonstrated changes in quasispecies distribution between tumor and nontumorous areas, suggesting viral compartmentalization within the tumor. These insights into the interplay between HCV and HCC call for further investigation of whether malignant hepatocytes express or lack factors that restrict HCV entry or negatively affect viral replication. Analysis of hepatitis C virus (HCV) replication and quasispecies distribution within the tumor of patients with HCV-associated hepatocellular carcinoma (HCC) can provide insight into the role of HCV in hepatocarcinogenesis and, conversely, the effect of HCC on the HCV lifecycle. In a comprehensive study of serum and multiple liver specimens from patients with HCC who underwent liver transplantation, we found a sharp and significant decrease in HCV RNA in the tumor compared with surrounding nontumorous tissues, but found no differences in multiple areas of control non-HCC cirrhotic livers. Diminished HCV replication was not associated with changes in miR-122 expression. HCV genetic diversity was significantly higher in livers containing HCC compared with control non-HCC cirrhotic livers. Tracking of individual variants demonstrated changes in the viral population between tumorous and nontumorous areas, the extent of which correlated with the decline in HCV RNA, suggesting HCV compartmentalization within the tumor. In contrast, compartmentalization was not observed between nontumorous areas and serum, or in controls between different areas of the cirrhotic liver or between liver and serum. Our findings indicate that HCV replication within the tumor is restricted and compartmentalized, suggesting segregation of specific viral variants in malignant hepatocytes.


PLOS ONE | 2012

Molecular Epidemiology of Neisseria meningitidis Serogroup B in Brazil

Ivano de Filippis; Ana Paula Silva de Lemos; Jessica B. Hostetler; Kurt Wollenberg; Claudio Tavares Sacchi; Lee H. Harrison; Margaret C. Bash; D. Rebecca Prevots

Background Neisseria meningitidis serogroup B has been predominant in Brazil, but no broadly effective vaccine is available to prevent endemic meningococcal disease. To understand genetic diversity among serogroup B strains in Brazil, we selected a nationally representative sample of clinical disease isolates from 2004, and a temporally representative sample for the state of São Paulo (1988–2006) for study (n = 372). Methods We performed multi-locus sequence typing (MLST) and sequence analysis of five outer membrane protein (OMP) genes, including novel vaccine targets fHbp and nadA. Results In 2004, strain B:4:P1.15,19 clonal complex ST-32/ET-5 (cc32) predominated throughout Brazil; regional variation in MLST sequence type (ST), fetA, and porB was significant but diversity was limited for nadA and fHbp. Between 1988 and 1996, the São Paulo isolates shifted from clonal complex ST-41/44/Lineage 3 (cc41/44) to cc32. OMP variation was associated with but not predicted by cc or ST. Overall, fHbp variant 1/subfamily B was present in 80% of isolates and showed little diversity. The majority of nadA were similar to reference allele 1. Conclusions A predominant serogroup B lineage has circulated in Brazil for over a decade with significant regional and temporal diversity in ST, fetA, and porB, but not in nadA and fHbp.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Profibrogenic chemokines and viral evolution predict rapid progression of hepatitis C to cirrhosis

Patrizia Farci; Kurt Wollenberg; Giacomo Diaz; Ronald E. Engle; Maria Eliana Lai; Paul Klenerman; Robert H. Purcell; Oliver G. Pybus; Harvey J. Alter

Chronic hepatitis C may follow a mild and stable disease course or progress rapidly to cirrhosis and liver-related death. The mechanisms underlying the different rates of disease progression are unknown. Using serial, prospectively collected samples from cases of transfusion-associated hepatitis C, we identified outcome-specific features that predict long-term disease severity. Slowly progressing disease correlated with an early alanine aminotransferase peak and antibody seroconversion, transient control of viremia, and significant induction of IFN-γ and MIP-1β, all indicative of an effective, albeit insufficient, adaptive immune response. By contrast, rapidly progressive disease correlated with persistent and significant elevations of alanine aminotransferase and the profibrogenic chemokine MCP-1 (CCL-2), greater viral diversity and divergence, and a higher rate of synonymous substitution. This study suggests that the long-term course of chronic hepatitis C is determined early in infection and that disease severity is predicted by the evolutionary dynamics of hepatitis C virus and the level of MCP-1, a chemokine that appears critical to the induction of progressive fibrogenesis and, ultimately, the ominous complications of cirrhosis.

Collaboration


Dive into the Kurt Wollenberg's collaboration.

Top Co-Authors

Avatar

Alicia Buckler-White

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Christine A. Kozak

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

John C. Avise

University of California

View shared research outputs
Top Co-Authors

Avatar

Yuhe Yan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Carrie Martin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Harvey J. Alter

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Patrizia Farci

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Bradley Sanville

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

D. Rebecca Prevots

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Darrell E. Hurt

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge