Ku‘ulei S. Rodgers
University of Hawaii
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ku‘ulei S. Rodgers.
PeerJ | 2014
Christopher P. Jury; Ku‘ulei S. Rodgers
Precise measurements were conducted in continuous flow seawater mesocosms located in full sunlight that compared metabolic response of coral, coral-macroalgae and macroalgae systems over a diurnal cycle. Irradiance controlled net photosynthesis (Pnet), which in turn drove net calcification (Gnet), and altered pH. Pnet exerted the dominant control on [CO32−] and aragonite saturation state (Ωarag) over the diel cycle. Dark calcification rate decreased after sunset, reaching zero near midnight followed by an increasing rate that peaked at 03:00 h. Changes in Ωarag and pH lagged behind Gnet throughout the daily cycle by two or more hours. The flux rate Pnet was the primary driver of calcification. Daytime coral metabolism rapidly removes dissolved inorganic carbon (DIC) from the bulk seawater and photosynthesis provides the energy that drives Gnet while increasing the bulk water pH. These relationships result in a correlation between Gnet and Ωarag, with Ωarag as the dependent variable. High rates of H+ efflux continued for several hours following mid-day peak Gnet suggesting that corals have difficulty in shedding waste protons as described by the Proton Flux Hypothesis. DIC flux (uptake) followed Pnet and Gnet and dropped off rapidly following peak Pnet and peak Gnet indicating that corals can cope more effectively with the problem of limited DIC supply compared to the problem of eliminating H+. Over a 24 h period the plot of total alkalinity (AT) versus DIC as well as the plot of Gnet versus Ωarag revealed a circular hysteresis pattern over the diel cycle in the coral and coral-algae mesocosms, but not the macroalgae mesocosm. Presence of macroalgae did not change Gnet of the corals, but altered the relationship between Ωarag and Gnet. Predictive models of how future global changes will effect coral growth that are based on oceanic Ωarag must include the influence of future localized Pnet on Gnet and changes in rate of reef carbonate dissolution. The correlation between Ωarag and Gnet over the diel cycle is simply the response of the CO2-carbonate system to increased pH as photosynthesis shifts the equilibria and increases the [CO32−] relative to the other DIC components of [HCO3−] and [CO2]. Therefore Ωarag closely tracked pH as an effect of changes in Pnet, which also drove changes in Gnet. Measurements of DIC flux and H+ flux are far more useful than concentrations in describing coral metabolism dynamics. Coral reefs are systems that exist in constant disequilibrium with the water column.
Pacific Science | 2015
Ku‘ulei S. Rodgers; Eric K. Brown; Skippy Hau; Russell Sparks
Abstract: The Hawai‘i Coral Reef Assessment and Monitoring Program (CRAMP) was established in 1999 to describe spatial and temporal variation in Hawaiian coral reef communities in relation to natural and anthropogenic factors. In this study, we analyzed changes over a 14-yr period (1999 to 2012) based on data from 60 permanent reef stations at 30 sites in the main Hawaiian Islands. Overall mean statewide coral cover, richness, and diversity did not vary significantly since the initial surveys, although local variations in coral cover trends were detected. The greatest proportion of stations with significant declines in coral cover was found on the island of Maui (0.4), and Hawai‘i Island had the highest proportion of stations with significant increases (0.67). Trends in coral cover at some stations varied over time due to acute (e.g., crown of thorns outbreak) and chronic (e.g., sedimentation) disturbances. Stations with increasing coral cover with the potential for recovery from disturbances were identified for possible management actions in the face of future climate change. The Hawaiian archipelago, located in the center of the subtropical Pacific, has experienced a temporary reprieve from steadily increasing temperatures over the past several decades due to a downturn of temperatures at the end of the last cycle of the Pacific Decadal Oscillation (PDO) in 1998. In 2014, however, temperatures increased dramatically in Hawai‘i, resulting in a major coral bleaching event with associated mortality. Temperature models predict severe bleaching events to increase in frequency and intensity in coming decades with concomitant decline in Hawaiian corals. Trends reported in this study provide a baseline that can later be used to test this predicted decline associated with future warming.
Environmental Management | 2012
Ku‘ulei S. Rodgers; Michael H. Kido; Tim Edmonds; Eric K. Brown
A linkage between the condition of watersheds and adjacent nearshore coral reef communities is an assumed paradigm in the concept of integrated coastal management. However, quantitative evidence for this “catchment to sea” or “ridge to reef” relationship on oceanic islands is lacking and would benefit from the use of appropriate marine and terrestrial landscape indicators to quantify and evaluate ecological status on a large spatial scale. To address this need, our study compared the Hawai‘i Watershed Health Index (HI-WHI) and Reef Health Index (HI-RHI) derived independently of each other over the past decade. Comparisons were made across 170 coral reef stations at 52 reef sites adjacent to 42 watersheds throughout the main Hawaiian Islands. A significant positive relationship was shown between the health of watersheds and that of adjacent reef environments when all sites and depths were considered. This relationship was strongest for sites facing in a southerly direction, but diminished for north facing coasts exposed to persistent high surf. High surf conditions along the north shore increase local wave driven currents and flush watershed-derived materials away from nearshore waters. Consequently, reefs in these locales are less vulnerable to the deposition of land derived sediments, nutrients and pollutants transported from watersheds to ocean. Use of integrated landscape health indices can be applied to improve regional-scale conservation and resource management.
PeerJ | 2017
Ku‘ulei S. Rodgers; Keisha D. Bahr; Angela Richards Donà
Drastic increases in global carbon emissions in the past century have led to elevated sea surface temperatures that negatively affect coral reef organisms. Worldwide coral bleaching-related mortality is increasing and data has shown even isolated and protected reefs are vulnerable to the effects of global climate change. In 2014 and 2015, coral reefs in the main Hawaiian Islands (MHI) suffered up to 90% bleaching, with higher than 50% subsequent mortality in some areas. The location and severity of bleaching and mortality was strongly influenced by the spatial and temporal patterns of elevated seawater temperatures. The main objective of this research was to understand the spatial extent of bleaching mortality in Hanauma Bay Nature Preserve (HBNP), O‘ahu, Hawai‘i to gain a baseline understanding of the physical processes that influence localized bleaching dynamics. Surveys at HBNP in October 2015 and January 2016 revealed extensive bleaching (47%) and high levels of coral mortality (9.8%). Bleaching was highly variable among the four HBNP sectors and ranged from a low of ∼31% in the central bay at Channel (CH) to a high of 57% in the area most frequented by visitors (Keyhole; KH). The highest levels of bleaching occurred in two sectors with different circulation patterns: KH experienced comparatively low circulation velocity and a low temperature increase while Witches Brew (WB) and Backdoors (BD) experienced higher circulation velocity and higher temperature increase. Cumulative mortality was highest at WB (5.0%) and at BD (2.9%) although WB circulation velocity is significantly higher. HBNP is minimally impacted by local factors that can lead to decline such as high fishing pressure or sedimentation although human use is high. Despite the lack of these influences, high coral mortality occurred. Visitor impacts are strikingly different in the two sectors that experienced the highest mortality evidenced by the differences in coral cover associated with visitor use however, coral mortality was similar. These results suggest that elevated temperature was more influential in coral bleaching and the associated mortality than high circulation or visitor use.
Ices Journal of Marine Science | 2016
Keisha D. Bahr; Ku‘ulei S. Rodgers
&NA; The response of corals to future conditions of global warming and ocean acidification (OA) is a topic of considerable interest. However, little information is available on the seasonal interaction between temperature, pCO2, and irradiance under ecologically relevant experimental conditions. Controlled experiments were performed in continuous‐flow mesocosms under full solar radiation to describe the direct and interactive effects of temperature, irradiance, and pCO2 on growth of a Hawaiian reef building coral (Montipora capitata) over an annual cycle. Corals were subjected to 12 experimental treatments consisting of two pCO2 levels (present‐day levels, 2× present), two temperature regimes (ambient, heated +2°C), and three conditions of irradiance (ambient, 50 and 90% reduction). A multiple polynomial regression model with full factorial fixed factors (temperature, pCO2, irradiance) was developed. Temperature and irradiance were the primary factors driving net calcification (Gnet) rates of M. capitata, with pCO2 playing a lesser role. Gnet showed a curvilinear response to irradiance and temperature, which defines thresholds at the end members. Also, high irradiance regimes under elevated temperatures showed a negative synergistic effect on Gnet. Therefore, decreasing irradiance penetration resulting from greater depth and/or higher turbidity will lower the impact of ocean warming on M. capitata. Results suggest that under future climate conditions, the interaction of environmental parameters may shift seasonal patterns in Gnet and timing of growth optima for M. capitata. Ocean warming in shallow water environments with high irradiance poses a more immediate threat to coral growth than acidification for this dominant coral species. In the future, increased temperature and the interaction between high irradiance and high temperature will be the main factors controlling Gnet with OA playing a less important role. This observation is congruent with other reports that high temperature combined with high irradiance is the main cause of high coral mortality during mass bleaching events.
Frontiers in Marine Science | 2017
Keisha D. Bahr; Ku‘ulei S. Rodgers
Coral bleaching events have been increasing in frequency and severity worldwide. The most prolonged global bleaching event began in 2014 and continued into 2017 impacting more reefs than any previous occurrence. Here we present the results of coral bleaching and mortality surveys conducted in Kāneʻohe Bay Oʻahu, Hawaiʻi and compare them to the only other widespread bleaching events to impact the main Hawaiian Islands in 1996 and 2014. Results from these surveys along with associated environmental factors were used to compare these events to gain a baseline understanding of the physical processes that influence localized bleaching dynamics under these extreme environmental conditions. Survey results show extensive variation in bleaching (1996- 62%, 2014- 45%, 2015- 30%) and cumulative mortality (1996- <1%, 2014- 13%, 2015- 22%) between years. Bleaching prevalence was observed to decrease in certain reef areas across events, suggesting some acclimation and/or resilience, but possible increase susceptibility to mortality. Long-term monitoring sites show a similar temporal pattern of coral mortality and decline in coral cover, but revealed some reefs remained relatively un-impacted by consecutive high temperature events. Across the three bleaching events, we found that although circulation patterns can facilitate heating, the duration and magnitude of the high temperature event were found to be the primary forcing functions for coral bleaching and mortality. Other localized primary drivers influencing water temperature such as irradiance, turbidity, and precipitation contributed to spatial variations. Recovery and resilience of this coral reef ecosystem is dependent on many factors including duration and magnitude of heating, resulting mortality levels, localized environmental factors in the bay, and coral species affected and their bleaching tolerances.
PeerJ | 2018
Steve L. Coles; Keisha D. Bahr; Ku‘ulei S. Rodgers; Stacie L. May; Ashley E. McGowan; Anita Tsang; Josh Bumgarner; Ji Hoon Han
Ocean temperatures have been accelerating at an alarming rate mainly due to anthropogenic fossil fuel emissions. This has led to an increase in the severity and duration of coral bleaching events. Predicted projections for the state of reefs do not take into account the rates of adaptation or acclimatization of corals as these have not as yet been fully documented. To determine any possible changes in thermal tolerances, manipulative experiments were conducted to precisely replicate the initial, pivotal research defining threshold temperatures of corals nearly five decades ago. Statistically higher calcification rates, survivorship, and lower mortality were observed in Montipora capitata, Pocillopora damicornis, and Lobactis scutaria in the present study at 31 °C compared to the original 1970 findings. First whole colony mortality was also observed to occur sooner in 1970 than in 2017 in M. capitata (3 d vs. 15 d respectively), L. scutaria (3 d vs. 17 d), and in P. damicornis (3 d vs. 13 d). Additionally, bleaching occurred sooner in 1970 compared to the 2017 experiment across species. Irradiance was an important factor during the recovery period for mortality but did not significantly alter calcification. Mortality was decreased by 17% with a 50% reduction in irradiance during the recovery period. These findings provide the first evidence of coral acclimatization or adaptation to increasing ocean temperatures for corals collected from the same location and using close replication of the experiment conducted nearly 50 years earlier. An important factor in this increased resistance to elevated temperature may be related to removal of the discharge of treated sewage into Kāne‘ohe Bay and resulting decrease in nitrification and eutrophication. However, this level of increased temperature tolerance may not be occurring rapidly enough to escape the projected increased intensity of bleaching events, as evidenced by the recent 2014 and 2015 high coral mortality in Hawai‘i (34%) and in the tropics worldwide.
PeerJ | 2017
Ku‘ulei S. Rodgers; Koi Lorance; Angela Richards Donà; Yuko Stender; Claire V. Lager
Coral reef restoration and management techniques are in ever-increasing demand due to the global decline of coral reefs in the last several decades. Coral relocation has been established as an appropriate restoration technique in select cases, particularly where corals are scheduled for destruction. However, continued long-term monitoring of recovery of transplanted corals is seldom sustained. Removal of coral from a navigation channel and relocation to a similar nearby dredged site occurred in 2005. Coral recovery at the donor site and changes in fish populations at the receiving site were tracked periodically over the following decade. Coral regrowth at the donor site was rapid until a recent bleaching event reduced coral cover by more than half. The transplant of mature colonies increased spatial complexity at the receiving site, immediately increasing fish biomass, abundance, and species that was maintained throughout subsequent surveys. Our research indicates that unlike the majority of historical accounts of coral relocation in the Pacific, corals transplanted into wave-protected areas with similar conditions as the original site can have high survival rates. Data on long-term monitoring of coral transplants in diverse environments is central in developing management and mitigation strategies.
Nature Geoscience | 2008
Ilsa B. Kuffner; Andreas J. Andersson; Ku‘ulei S. Rodgers; Fred T. Mackenzie
Geochemistry Geophysics Geosystems | 2012
Ilsa B. Kuffner; Ku‘ulei S. Rodgers; Andreas J. Andersson; Fred T. Mackenzie